Adeboye, Nurain Olawale and Alabi, Nurudeen Olawale (2022) Deep-LearningModellingofDynamicPanelDataforAfricanEconomicGrowth. Journal of Econometrics and Statistics, 2 (1). pp. 47-60. ISSN 2583-0473
Text
Deep-Learning Modelling of Dynamic Data for African Economic Growth.pdf Download (404kB) |
Abstract
NigeriaApril28,2022Whenmodellingphenomenarelatingtotheeconomy,dynamicpanelmodelshaveproventobeausefultool.Previousstudieshavemodelleddynamicpaneldatausingconventionalmethodsofgeneralizedmethodofmoment,InstrumentalvariablesandMaximumlikelihoodestimatorsamongothers.Thisstudyhoweverfocusesonmodellingdynamicpaneldatausingmoderndayapproachesofdeep-learningtechniques.Tothisend,twomacro-economicvariablesofPurchasingPowerParity(PPP)andGrossNationalIncome(GNI)wereemployedtomodeltheeco-nomicgrowthoftwentyAfricancountries.DynamicpanelinformationaboutthesecountriesweresourcedfromUNESCOdatabasebetween1990and2019.DeeplearningtechniquesofLongTermShortmemory(LSTM),BidirectionalLongShortTermMemory(Bi-LSTM)andGatedRecurrentUnits(GRU)wereemployedinthemodellingprocess,andthefindingsrevealedthatLSTMhavingtheleastvaluesoftheadoptedeval-uationmetrics,isthebestandmostsuitabledeeplearningmethodformodellingdynamicpaneldata.Forecastswerealsomadeforthenext20yearswiththetechniques,andtheresultsshowthatLSTMgivesthebestpredictingaccuracywithitslowestMeanAbsoluteError(MAE),MAPE,MSEandRMSE.
Item Type: | Article |
---|---|
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Engineering, Science and Mathematics > School of Electronics and Computer Science |
Depositing User: | Mr. Bolanle Yisau I. |
Date Deposited: | 31 Aug 2023 04:37 |
Last Modified: | 31 Aug 2023 04:37 |
URI: | http://eprints.federalpolyilaro.edu.ng/id/eprint/2330 |
Actions (login required)
View Item |