Deep-LearningModellingofDynamicPanelDataforAfricanEconomicGrowth

Adeboye, Nurain Olawale and Alabi, Nurudeen Olawale (2022) Deep-LearningModellingofDynamicPanelDataforAfricanEconomicGrowth. Journal of Econometrics and Statistics, 2 (1). pp. 47-60. ISSN 2583-0473

[img] Text
Deep-Learning Modelling of Dynamic Data for African Economic Growth.pdf

Download (404kB)

Abstract

NigeriaApril28,2022Whenmodellingphenomenarelatingtotheeconomy,dynamicpanelmodelshaveproventobeausefultool.Previousstudieshavemodelleddynamicpaneldatausingconventionalmethodsofgeneralizedmethodofmoment,InstrumentalvariablesandMaximumlikelihoodestimatorsamongothers.Thisstudyhoweverfocusesonmodellingdynamicpaneldatausingmoderndayapproachesofdeep-learningtechniques.Tothisend,twomacro-economicvariablesofPurchasingPowerParity(PPP)andGrossNationalIncome(GNI)wereemployedtomodeltheeco-nomicgrowthoftwentyAfricancountries.DynamicpanelinformationaboutthesecountriesweresourcedfromUNESCOdatabasebetween1990and2019.DeeplearningtechniquesofLongTermShortmemory(LSTM),BidirectionalLongShortTermMemory(Bi-LSTM)andGatedRecurrentUnits(GRU)wereemployedinthemodellingprocess,andthefindingsrevealedthatLSTMhavingtheleastvaluesoftheadoptedeval-uationmetrics,isthebestandmostsuitabledeeplearningmethodformodellingdynamicpaneldata.Forecastswerealsomadeforthenext20yearswiththetechniques,andtheresultsshowthatLSTMgivesthebestpredictingaccuracywithitslowestMeanAbsoluteError(MAE),MAPE,MSEandRMSE.

Item Type: Article
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Engineering, Science and Mathematics > School of Electronics and Computer Science
Depositing User: Mr. Bolanle Yisau I.
Date Deposited: 31 Aug 2023 04:37
Last Modified: 31 Aug 2023 04:37
URI: http://eprints.federalpolyilaro.edu.ng/id/eprint/2330

Actions (login required)

View Item View Item