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+e process of heat transfer in boundary layer magneto-micropolar fluid with temperature-dependent material properties past a
flat stretching sheet in a porous medium is investigated in this study. Two distinct cases of boundary heating conditions are
analyzed for the heat transfer in this work, viz., prescribed surface temperature (PST) and prescribed heat flux (PHF).With the aid
of similarity conversion analysis, the formulated equations of the flow and heat transfer have been translated into a system of
nonlinear ordinary differential equations. Subsequently, Runge–Kutta–Fehlberg integration scheme in company of shooting
techniques employed to obtain numerical solutions to the reduced equations. +e findings are graphically illustrated and
discussed in view of the two cases of boundary heating, while the results for the physical quantities of engineering concern are
tabulated for various controlling parameters. In the limiting situations, the results generated are compared favourably with the
earlier reported data in the literature, while the numerical solutions demonstrate a reduction in the rate of heat transfer (Nu⋆x) and
the viscous drag (C⋆f) for both PST and PHF conditions with growth in the magnitude of material parameter K.

1. Introduction

+e dynamics of non-Newtonian fluids has gained preem-
inence in the recent times owing to their potential appli-
cations both in engineering and industrial operations. For
instance, in crude oil extraction, food processing, extrusion
of polymers, and syrup drugs. +e characteristics feature of
non-Newtonian fluids might differ from that of Newtonian
fluids in diverse ways: the shear thinning or thickening of the
fluid, the tendency to yield stress and display stress relax-
ation, and to creep. Most often, the viscosity depends on the
shear rate or shear rate history. Such fluids include sus-
pension solutions, biological fluids (e.g., saliva and blood),
lubricants, polymer solutions and colloids, and emulsions
[1].

+e diversity in the nature of non-Newtonian fluids gives
room for the existence of different models, each of them

capturing particular characteristics of the fluid since no
single model can completely capture all the features of non-
Newtonian fluids. Prominent among the non-Newtonian
fluid models include the micropolar fluid, Maxwell fluid,
Walters-B fluid, Casson fluid, Eyring–Powell fluid, and
Jeffery fluid [1]. Eringen [2, 3] initiated the concept of
micropolar fluid which is a subclass of simple microfluids.
+is concept explains fluids with microstructures. In the
physical description, these fluids are made up of rigid, bar-
like, or spherical particles suspended in a viscous medium.
Examples are polymeric fluids, animal blood, exotic lubri-
cants, body fluids, colloids, and liquid crystals. +is concept
is interesting and attractive as it represents a generalization
of the classical Navier–Stokes concept alongside its practical
applications in different areas of science, engineering, and
technology, for instance, in biomedical fluid engineering,
synovial lubrication, drug suspension in pharmacology,
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arterial blood flow, and extrusion of polymer fluids [4]. More
so, Ahmadi [5] as well as Hayat et al. [6] pointed out that this
class of fluids offers a mathematical framework for analyzing
many complex and complicated fluids including polymeric
fluids, fluid suspensions, exotic lubricants, and paints. A
thorough review on the theory and applications of the
micropolar fluid was presented by Lukaszewicz [7], while the
boundary layer flows of such fluids were first reported by
Peddieson and McNitt and Wilson [8, 9].

Studies involving fluid flow analysis with heat transfer
characteristics activated by a stretching sheet have conse-
quential engineering and industrial applications which in-
clude wire drawing, extrusion of polymer sheet, glass
blowing, and textile and paper production. Pioneering such
study, Crane [10] reported a closed form analytical solution
where the velocity is proportional to the distance from the
fixed origin. +ereafter, various researchers have extended
such study under different situations. Gupta and Gupta [11]
considered the impact of suction or blowing on the heat and
mass transfer due to a stretching sheet being influenced by
constant surface temperature. Furthermore, Chakrabarti
and Gupta [12] offered a similarity solution to such problem
with the impact of a transverse magnetic field with constant
suction and temperature. Grubka and Bobba [13] derived
closed form solutions of variable temperature on the transfer
of heat prompted by a stretching sheet with a prescribed
surface temperature, while Elbashbeshy and Bazid [14]
engaged numerical tool via Runge–Kutta integration tech-
nique cum shooting technique to address such problem in a
porous medium. In addition, Eldabe et al. [15] analyzed
MHD non-Newtonian micropolar fluid with heat transfer
characteristics, while Fatunmbi and Odesola [16] reported
such study with uniform heat flux.

+e aforementioned research studies were, however,
conducted with a notion that the fluid thermophysical
properties are constant whereas these properties, particu-
larly the fluid viscosity and thermal conductivity, have been
found to vary with changes in temperature.+e internal heat
generation due to friction as well as an increase in tem-
perature may influence these properties. In particular, the
increase in temperature from 10°C to 50°C causes the vis-
cosity of water to decrease by about 240%, while the viscosity
of air is 0.6924 × 10− 5 at 1000K, 1.3289 at 2000K, 2.286 at
4000K, and 3.625 at 8000K [17]. Hence, the assumption of
constant fluid properties may not yield accurate results as
remarked by Postelnicu et al. [18]. For accurate prediction,
therefore, it is essential to find out the possible effects of
temperature-dependent thermophysical properties of the
fluid on heat transfer processes. +e application of such
study includes hot rolling, paper and textile production,
process of wire drawing, and drawing of plastic films. To this
end, various researchers [19–21] have investigated the in-
fluence of variable fluid properties along stretching surfaces
for different fluids employing diverse heating conditions and
geometry.

Fluid flow as well as heat transfer in porous materials has
consequential applications in diverse industrial and engi-
neering works ranging from geothermal energy extractions,
petroleum technology, ceramic and ground water

hydrology, and solar heating systems to polymer technology
and nuclear reactor. Due to these crucial applications,
Ahmed and Rashed [22] as well as Amanulla et al. [23]
recently reported such cases. +ese effects have also been
analyzed by various researchers [24–26].

+e understanding of the impact of radiation in heat
transfer processes is quite essential for the construction and
development of appropriate equipment in various energy
conversion and engineering operations such as in gas tur-
bines and nuclear power plants, as well as in diverse pro-
pulsion devices for aircraft [27].+is effect has been reported
by a number of researchers [28–30]. Besides, the nature of
heat transfer is also dictated by the type of wall heating
condition that is applied in industrial and engineering
processes. In the light of this, Gholinia et al. [31] applied PST
to examine the movement of nanofluid through a circular
cylinder with magnetic field impact. Cortell [30] engaged
PST and PHF heating conditions to investigate heat transfer
activated by the nonlinear stretching sheet in the presence of
thermal radiation, suction/injection, and viscous dissipation.
Similarly, Gireesha et al. [32] applied both heating condi-
tions to explore the nature of heat transfer in a dusty fluid,
while numerical investigation of the influence of variable
fluid properties on such problem was carried out by Pal and
Mondal [33].

Nevertheless, these studies have only been conducted
with Newtonian fluids without due consideration for the
non-Newtonian fluids especially the micropolar fluid inspite
of its immense applications in engineering, science, and
technology as highlighted earlier. +us, it becomes imper-
ative to examine the boundary layer heat transfer processes
on such fluid with relevant application in polymer indus-
tries. In particular, this study focuses on numerical analysis
of boundary layer heat transfer characteristics in MHD non-
Newtonian micropolar fluid being influenced by tempera-
ture-dependent properties, viscous dissipation, and thermal
radiation under the application of both PST and PHF wall
heating conditions. +e organization of the study is as
follows: Section 1 is the introduction to the study, while
Section 2 narrates the mathematical formulation of the
work, Section 3 portrays the method of solution to the
transformed governing equations, Section 4 covers the
discussion of results, while the conclusion is explained in
Section 5.

2. Mathematical Formulation

+e physical model in this work is portrayed in Figure 1
showing a two-dimensional, steady, and incompressible
flow of micropolar fluid passing a stretching sheet in a
porous medium being influenced by thermal radiation,
internal heat generation, or absorption, as well as viscous
dissipation. Here, the flow direction is towards x axis,
whereas y axis is normal to it with u and v designating
components of velocity in the direction of x and y.
Meanwhile, a constant magnetic field B � (0, Bo, 0) parallel
to y axis is imposed perpendicular to flow direction,
whereas the induced magnetic field is negligible. At the
sheet, the velocity is taken to be uw � ax, while the external
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flow velocity is taken to be zero. More so, the prescribed
surface temperature (PST) T � Tw � T∞ + A(x/L)2 and the
prescribed heat flux (PHF) − k∞(zT/zy) � qw � D(x/L)2

are assumed as the boundary heating conditions. Also, the
angular velocity of the microparticles N � (0, 0, N(x, y)) is
applied, while both viscosity and thermal conductivity are
temperature-dependent.

In the light of the aforementioned assumptions and
boundary layer approximation, the governing equations are
[19, 20]
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In line with several authors [34–36], the temperature-
dependent viscosity μ is expressed as

μ(T) �
μ0

1 + β T − T∞( 􏼁􏽨 􏽩
. (5)

Also, the variation of the thermal conductivity k with
temperature can be expressed in an approximately linear
form as [33, 37, 38]

k(T) Tw − T∞( 􏼁 � k∞ Tw − T∞( 􏼁 + ϵ T − T∞( 􏼁􏽨 􏽩. (6)

Similarly, various researchers [21, 39] have shown that
the structure of radiative heat flux can be described as
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Equations (1)–(3) have the following boundary
conditions:

y � 0: u � uw � ax, v � 0, N � − n
zu

zy
,

y⟶∞: u⟶ 0, N⟶ 0.

(8)

+e conditions at the boundary for the solution of energy
equation (4) are particularly determined by the nature of
heating process applied. In this study, we have imposed two
different cases: (i) PST and (ii) PHF. +erefore, following
[30, 33], the boundary conditions for equation (4) are
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In equations (1)–(9), the fluid density is represented by ρ,
while u and v represent the velocity components in the
direction of x and y, respectively. +e vortex or micro-
rotation viscosity is represented as κ, N defines the
microrotation component, T denotes the fluid temperature,
while Bo is the magnetic field strength, and the specific heat
at constant pressure is Cp. More so, Tw and T∞ stand for the
sheet temperature and the free stream temperature, re-
spectively. +e heat source/sink is symbolized by Q⋆, while
Kp stands for the permeability of the porous medium, and a

is a constant, a> 0.
More so, j represents the microinertia density, while

the spin gradient viscosity is described as c which has been
defined by various authors as c � (μ + κ/2)j (see Ahmadi
[5] and Ishak [29]); also, σ⋆ and α⋆ define the Ste-
fan–Boltzmann constant and the mean absorption coeffi-
cient, respectively.

Similarly, n in equation (5) defines the micropolar
boundary parameter with 0≤ n≤ 1 [29]. Here, n � 0, it
implies that N � 0, and this relates to a strong concen-
tration of the microelements at the solid boundary, while
n � 1/2 designates the case of weak concentration (see
Peddieson [40] and Jena and Mathur [41]). Furthermore,
Ahmadi [5] suggested that n � 1 is applicable for turbu-
lence situations in the boundary layer. In equations (5), (6),
and (9), μ0 stands for viscosity at reference temperature, k∞
represents the free stream thermal conductivity, ϵ denotes
the variable thermal conductivity parameter, L denotes the
characteristic length, qw defines the heat flux, while A and
D are constants. +e underlisted similarity and nondi-
mensional variables are also introduced into governing
equations (1)–(4):
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Figure 1: Flow geometry.
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With the substitution of equation (10) in equations
(1)–(4) and taking cognizance of equations (5)–(7), equation
(1) is valid, while equations (2)–(4) translate to
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Boundary conditions (8) similarly translate to
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while boundary conditions (9) transform to

(i) θ(0) � 1,
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Various symbols involved in equations (11)–(13) are
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where h denotes the temperature-dependent viscosity pa-
rameter and β> 0, K represents the material (micropolar)
parameter, Da is the Darcy parameter, Pr stands for the
Prandtl parameter, Q denotes the heat source/sink param-
eter, Ec stands for the Eckert number, Nr defines the ra-
diation parameter, and M denotes the magnetic field
parameter. It is important to note also that the size of vortex
or microrotation viscosity κ allows us to measure in certain
sense the deviation of the micropolar fluid model from that
of the classical Newtonian fluid model. Hence, when
κ � 0 (K � 0), equations (2) or (11) and (4) or (13) are
decoupled from equation (3) or (12). +en, the present
problem as well as its solution reduces to the model of
classical Newtonian fluid.

+e relevant quantities of engineering concern are the
skin friction coefficient, the Nusselt number, and the wall
couple stress coefficient which are correspondingly de-
scribed in the following equation:

Cf �
τw

ρu2
w

,
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xqw
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,

Cs �
xMw

μja
,
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where τw � [(μ + κ)(zu/zy) + κN]y�0 defines the wall shear
stress, qw � − k∞[(1 + Nr)(zT/zy)]y�0 describes the heat
flux at the surface, while Mw � [c(zN/zy)]y�0 gives the wall
couple stress.
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+e respective nondimensional form of the skin friction
and the couple stress coefficients are (see Rahman et al. [42])

C
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while the nondimensional Nusselt number for the PST and
PHF conditions is, respectively, given as
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We compare our model with existing ones in the lit-
erature as depicted in Table 1.

3. Method of Solution

+e numerical solutions of equations (11)–(13) with the as-
sociated boundary conditions (14) and (15) have been sought
via shooting procedure cum Runge–Kutta–Fehlberg fourth-
fifth integration technique. Using this technique, a suitable
finite value of η⟶∞ has been selected, say η∞. +e non-
linear set of equations (11)–(13) with order three inf and order
two in both g and θ is reduced into a set of seven first-order
simultaneous linear equations after which they are transmuted
into an initial value problem bymeans of the shooting method.
+is system requires seven initial conditions for the solution;

however, there are four initial conditions available. +e un-
known initial conditions p1, p2, and p3 are guessed to get
f″(0), g′(0), and θ′(0) in a manner that satisfies the given
conditions at the boundary. +is trial procedure is applied in a
bit to obtain the unknown initial conditions. As the values of
p1, p2, and p3 are obtained, the integration is carried out with
those values, and the accuracy of the unknown initial condi-
tions is cross-checked by taking a comparison between the
calculated value with the given end point. +is procedure is
reworked again with a larger value of η∞ and continues till we
obtain the solution for which successive values of the unknown
initial conditions f″(0), g′(0), and θ′(0) produce a difference
after a preferred significant digit. +e final value of η∞ is then
taken as suitable value of the limit η⟶∞ for a particular set
of governing parameters. More details on the shooting tech-
nique can be seen inAttili and Syam [47] aswell asMahanthesh
et al. [48]. +e conversions of the higher-order equations into
first-order differential equations are carried out as follows.
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(21)

Table 1: Table of comparison showing authors and the special cases
of our model problem.

Author PST PHF K h ϵ Da R Ec Q

Seddeek and
Salem [43] No Yes No No Yes No Yes No No

Khedr et al. [44] No No Yes No No No Yes Yes Yes
Eldabe et al. [15] No No Yes No No Yes No Yes No
Cortell [30] Yes Yes No No No No Yes Yes No
Nandeppanavar
et al. [45] Yes Yes No No Yes No No No Yes

Pal and
Mondal [33] Yes Yes No Yes Yes No Yes No No

Waqas et al. [46] No Yes Yes No No No Yes No Yes
Present work Yes Yes Yes Yes Yes Yes Yes Yes Yes
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and the conditions at the boundary also translate to

f1(0) � 0,

f2(0) � 1,

f3(0) � p1,

f4(0) � − nf3(0),

f5(0) � p2,

f6(0) � 1,

f7(0) � p3,

f2(∞)⟶ 0,

f4(∞)⟶ 0,

f6(∞)⟶ 0.

(22)

4. Results and Discussion

To judge the accuracy of the numerical results obtained in
this work, we have compared our solutions relating to C⋆f
with the data given by Kumar [49] and Tripathy et al. [50]
for a coupling situation as presented in Table 2. A good
relationship exists between the present results with those
authors in the limiting situations. Besides, Table 3 por-
trays a comparison of the Nusselt number Nu⋆x for var-
iations in Prandtl number Pr for the PST case with the
reports given previously by Chen [51] and Seddeek and
Salem [43], as well as Pal and Mondal [33] in some
limiting conditions. +e comparisons conform well with
the earlier reported works as depicted in Table 3. Fur-
thermore, the response of each of the controlling physical
parameters has also been displayed through Figures 2–9
while that of C⋆f, Nu⋆x, and C⋆s has been tabulated for
effective analysis and discussion.

In Table 4, the reactions of some selected controlling pa-
rameters on C⋆f, Nu⋆x, and C⋆s for the two cases investigated
have been presented. +e parameters investigated here are the
temperature-dependent viscosity h, material (micropolar)
parameter K, as well as Prandtl number Pr. Obviously, it is
seen that, as thematerial (micropolar) parameterK appreciates
in magnitude, a noticeable damping trend occurs in both C⋆f
and C⋆s as well as in Nu⋆x for both cases examined.

From the trends in Table 4, indication emerges that the
micropolar fluid termK tends to reduce the viscous drag and as
well lowers the heat transfer at the surface of the sheet for both
cases. Furthermore, observation shows that a rise in Pr en-
hances the transfer of heat at the sheet surface for the two cases,
whereas the friction on the skin and the wall couple stress
coefficients for both cases reacted differently. For the PSTcase,
both C⋆f and C⋆s increase as Pr rises, whereas the trend was
reversed for the PHF case, where bothC⋆f andC⋆s decrease. It is
noticed as well that the growth in themagnitude of the viscosity
parameter h boost C⋆f and C⋆s for both wall heating conditions,
whereas the rate of heat transfer Nu⋆x declines in both situa-
tionswith growth in themagnitude of h.+ese observations are
in consonance with those of Das [52].

Table 5 shows the impact of some of the physical
parameters on C⋆f, Nu⋆x, and C⋆s for both cases. +e

physical parameters investigated here are the tempera-
ture-dependent thermal conductivity ϵ, Eckert number
Ec, and the thermal radiation parameter Nr. Evidently, as
noticed from this table, with a boost in the magnitude of
ϵ, Ec, and Nr, a diminishing reaction occurs in C⋆f and C⋆s
as well as in Nu⋆x for the PSTcase. However, advancing the
magnitude of ϵ, Ec, and Nr accelerates both C⋆f and C⋆s for
the PHF case, while declining effect is noticed for that of
Nu⋆x.

Table 2: Comparison of values ofC⋆f with Kumar [49] and Tripathy
et al. [50] for variation in K, M, and Da when n � 0.5.

K M Da Kumar [49] Tripathy et al. [50] Present
0.0 0.0 0.0 1.000000 1.000008 1.0000084
0.5 0.0 0.0 0.880200 0.901878 0.8994515
0.5 1.0 0.0 1.209900 1.250358 1.2496132
0.5 1.0 1.0 — 1.510062 1.5127320
0.0 0.5 0.0 1.189000 1.225590 1.2257448
1.0 0.5 0.0 0.997600 0.995088 0.9919970
1.0 0.5 1.0 — 1.2651260 1.2646592

Table 3: Values of Nu⋆x for variations in Pr as compared with
published works when M � Da � Ec � K � H � B � ξ � h �

R � 0.

Pr
Chen
[51]

Seddeek and
Salem [43]

Pal and
Mondal [33]

Present
results

0.72 1.08853 1.08852 1.088548 1.08852691
1.00 1.33334 1.33333 1.353545 1.33333333
3.00 2.50972 250972 2.507856 2.50972521
7.00 3.97150 3.97150 — 3.97151157
10.00 4.79686 4.97151 4.795510 4.79687327

M = Da = Nr = 0.5, Ec = 0.2,
Pr = 0.7, є = 0.3, K = 0.7

h = 0.0, 1.5, 4.0

PHF
PST

2 4 6 8 10 120
η

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

θ 
(η

)

Figure 2: Impact of viscosity parameter h on the field of
temperature.
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From the plot in Figure 2, the reaction of variable vis-
cosity parameter h evidently reveals that a growth in h fa-
vours the temperature distribution and as well thickens the
thermal boundary layer thickness for both cases. Higher

fluid viscosity creates resistance to the fluid motion, and
consequently, heat is being generated due to the sluggishness
in the flowwhich leads to a rise in temperature. However, the
impact created by the PHF case is stronger than that of the
PSTcase with growth in h. More so, it is clear that the surface
temperature is lower in the absence of temperature-
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Figure 3: +ermal conductivity parameter ϵ variation with tem-
perature profiles.
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Figure 4: Magnetic field parameter M variation with temperature
distribution.
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Figure 6: Reaction of thermal field for variation in material pa-
rameter K.
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Figure 5: Variation of Darcy term Da on temperature field.
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dependent viscosity parameter h, i.e., h � 0, for both situ-
ations. Similarly, the plot in Figure 3 depicts that advancing
themagnitude of the thermal conductivity term ϵ enables the
surface temperature to appreciate which also enhances the

thickness of the thermal boundary layer for both conditions.
For a constant state of ϵ, a lower surface temperature is
witnessed as compared with the variable state.+e PHF case,
however, exerts a stronger influence on the temperature field
than that of PST.

Figure 4 demonstrates that the surface temperature
grows in both cases with rising values of the magnetic field
term M. Physically, the application of M heats up the fluid
and thus lowers the heat transfer. Besides, when the mag-
netic field is imposed transversely on the fluid which is
electrically conducting, it induces a kind of force described
as Lorentz force such that the motion of the fluid is declined.
In consequence of the declination to the flow imposed by the
Lorentz force, the surface temperature rises as depicted in
the graph.

A similar behaviour to that of M is observed for varying
Darcy parameter Da on the temperature distribution as
demonstrated in Figure 5. +e graph of the dimensionless
temperature against η for variations in the material (micro-
polar) parameter K shown in Figure 6 reveals that a growth in
the magnitude of K facilitates a rise in the thickness of the
thermal boundary layer, and at such, there is advancement in
the temperature field for the two cases examined.

Figure 7 is a sketch of the behaviour of the Prandtl
number Pr as relates to the nondimensional temperature.
Evidently, a rise in the magnitude of Pr produces a dampen
effect on the temperature distribution and as well a decline in
the thermal boundary thickness. +e implication here is that
a growth in Pr lowers the thermal boundary layer thickness
which in turn diminishes the average temperature. In the
physical description, the Prandtl number is inversely pro-
portional to the thermal diffusivity, so a boost in Pr lowers
thermal diffusion. In consequence, the surface temperature
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Figure 7: Impact of Prandtl number Pr on the field of temperature.
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Figure 8: Influence of radiation parameter Nr on the profiles of
temperature.
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Figure 9: Reaction of temperature field with Eckert number Ec.
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declines. Increasing Prandtl parameter, therefore, enhances
the rate of cooling (see Table 4) as fluids with smaller Pr

create stronger conductivities such that heat diffuses quickly
away from the heated surface. However, a sharp decrease in
the surface temperature is noticed for the PHF case than that
of the PST case.

It is obvious from Figure 8 that rising values of Nr

encourages growth in the field of temperature. In line with
expectation, a growth in the thermal boundary layer is
encountered with risingNr.+is reaction occurs due to a fall
in the mean absorption coefficient of the Rosseland ap-
proximation as Nr rises. In such situation, the divergence of
the radiative heat flux as well as the heat transfer into the
fluid is enhanced. Besides, a rise in Nr has the tendency to
boost the conduction influence which enables the temper-
ature advance at every point away from the sheet. Figure 9
depicts the plot of temperature against η for variation in the
Eckert number Ec for both thermal situations. Advancing
the magnitude of Ec relates to heat dissipation owing to
viscous force, and at such, the heat dissipated flows towards
the fluid, and in consequence, the temperature is raised.
More so, the reaction is also attributed to the fact that rising
values of Ec facilitates heat production due to the drag
between the fluid particles; thereby, the internal heat gen-
eration rises and the temperature increases for both cases.

5. Conclusion

+e current research investigates heat transfer behaviour for
thermally radiating magneto-micropolar fluid passing a

linearly stretching sheet embedded in a porous medium.+e
impact of pertinent parameters of engineering interest has
been checked on the heat transfer processes with the ap-
plication of PST and PHF as wall heating conditions. Nu-
merical solutions via the shooting method cum
Runge–Kutta–Fehlberg integration technique have been
applied for the resulting nonlinear ODEs, while the effects of
the controlling parameters are analyzed and explained via
graphs as well as tables. +e following have been deduced
from this study:

(i) As K, ϵ, Ec, and R (or Pr) increase, there is a decline
(or advancement) in C⋆f, Nu⋆x, and C⋆s for the case of
PST. For the PHF case, however, an increase in
h, ϵ, Ec, and R (or Pr) causes C⋆f and C⋆s to rise (or
fall), while the transfer of heat at the surface reduces
(or rises).

(ii) +e transfer of heat reduces at the surface with
growth in the magnitude of the material parameter
K for both cases, whereas a rise in Pr shows a re-
verse situation for both cases.

(iii) +e prescribed heat flux (PHF) case has a more
pronounced and stronger impact on the parameters
across the boundary layer than that of the prescribed
surface temperature (PST).

(iv) An increase in h, ϵ, M, R, Ec with Da thickens the
thermal boundary layer thickness, whereas the
opposite occurs when the magnitude Pr advances
for both cases.

Table 4: Computational values of C⋆f, Nu⋆x , and C⋆s for variations in h, K, and Pr.

Parameters PST case PHF case
h K Pr C⋆f Nu⋆x C⋆s C⋆f Nu⋆x C⋆s

0 1 1 1.378596 0.671717 0.620166 1.378596 0.505664 0.620166
1.5 1 1 1.670709 0.548272 0.775964 1.788282 0.415882 0.834327
4.0 1 1 1.800210 0.408643 0.840104 1.912646 0.381195 0.895340
0.5 0.5 1 1.493594 0.593211 0.689887 1.627674 0.501681 0.752622
0.5 1.5 1 1.429256 0.461600 0.639020 1.518529 0.427921 0.687668
0.5 5.0 1 1.367540 0.001809 0.565978 1.418209 0.329233 0.595780
0.5 1 1 1.453795 0.527184 0.662056 1.559297 0.472887 0.717032
0.5 1 2.5 1.466633 0.846367 0.671385 1.485600 0.661834 0.681771
0.5 1 4.5 1.475835 1.098439 0.678283 1.466742 0.873746 0.673121

Table 5: Computed values of C⋆f, Nu⋆x , and C⋆s C⋆s for variations in ϵ, Ec, and R.

Parameters PST case PHF case
ϵ Ec Nr C⋆f Nu⋆x C⋆s C⋆f Nu⋆x C⋆s

0 1 1 1.533853 0.741649 0.705545 1.559892 0.819345 0.719947
0.5 1 1 1.528221 0.588995 0.701624 1.586188 0.625917 0.732591
1.0 1 1 1.521419 0.444884 0.697065 1.620479 0.454651 0.749108
0.5 0 1 1.458978 0.766506 0.666063 1.518526 0.635267 0.696908
0.5 0.5 1 1.453795 0.527184 0.662056 1.559297 0.472889 0.717032
0.5 1.0 1 1.448910 0.288854 0.658270 1.591234 0.381405 0.732830
0.5 1 0.1 1.453795 0.527184 0.662056 1.559297 0.472889 0.717032
0.5 1 1.0 1.449006 0.416175 0.658649 1.597896 0.361478 0.735897
0.5 1 1.5 1.447372 0.375465 0.657477 1.615088 0.322920 0.744367
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Nomenclature

u, v: Velocity in x, y direction (ms− 1)
]: Kinematic viscosity (m2s− 1)
ρ: Fluid density (kgm− 3)
μ: Viscosity (kgm− 1s− 1)
μr: Vortex viscosity
σ: Electrical conductivity (Sm− 1)
cp: Specific heat capacity (J/kgK)
k: +ermal conductivity (Wm− 1K− 1)
p: Surface boundary parameter
σ⋆: Stefan–Boltzmann constant (Wm− 2K4)
T: Temperature (K)
hf: Coefficient of heat transfer
Tf: Surface sheet temperature (K)
Uw: Velocity at the sheet (ms− 1)
U0: Nonlinear stretching parameter
j: Microinertia density (kgm− 3)
c: Spin gradient viscosity (m2s− 1)
T∞: Temperature at free stream (K)
B: Microrotation component (s− 1)
k⋆: Mean absorption coefficient (m− 1).
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