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A B S T R A C T

Theoretically, micropolar fluids are used in the biomedical investigations. This study analyzes the flow, heat and
mass transfer in a magneto-micropolar reactive fluid over a nonlinear stretching sheet in a saturated non-Darcy
porous medium. The impact of velocity, thermal and concentration slips with prescribed surface temperature
and concentration boundary conditions are examined. Mathematical models are formulated and solved using an
iterative technique spectral quasi-linearization method. The results of numerical simulations are depicted gra-
phically. The present results when cross-checked with earlier reported data in the literature for limiting con-
ditions exhibit good agreement. The results show that the momentum and thermal boundary layer thicknesses
fall as the nonlinear stretching parameter increases while the opposite occur with a rise in the thermal con-
ductivity parameter.

1. Introduction

The concept of micropolar and thermo-micropolar fluids as a class
of non-Newtonian fluids emanated from the work of Eringen [1,2] and
has gained active attention of researchers and scientists because of its
significance in several fields of engineering, science and technology. For
instance, in bio-medical engineering such as fluid flow in brains and
blood flows; metallurgical drawing of filaments, chemical engineering
including paint rheology; pharmacodynamics and drug delivery and so
on [3,4]. The concept of a micropolar fluid is associated with a group of
fluids that manifest certain microscopic properties stemming from the
intrinsic structure and micro-movement of the fluid element. They
posses microstructural particles which are complex in nature which
may be of varying sizes and sometimes contract and/or expand and
periodically changing shapes and spin individually. The microstructural
pattern of the fluid particles in micropolar fluids, provide a good
mathematical framework for simulating the flow attributes of real and
complex fluids including polymeric additives, colloidal suspensions,
liquid crystals, animal blood, exotic lubricants and so on for which the
structure of Navier-Stokes equations of classical hydrodynamic cannot
perfectly described [5].

Fluid flow passing a stretching sheet has a lot of interesting in-
dustrial and engineering relevant uses such as in the extrusion of plastic
sheets, paper and textile production, hot rolling, wire drawing, etc. [6].

The study of such flows evolved from the work of Crane [7] and has
been investigated by various researchers analysing the impact of vital
parameters on different fluids, geometries, boundary conditions and
methods. For instance, Muhammad et al. [8] recently reported on the
flow of a viscous ferrofluid passing a linearly stretched sheet influenced
by a magnetic dipole. Mahmoud [9] used a micropolar fluid whereas
Akbar et al. [10] applied an Eyring-Powell fluid. However, in practical
situations, the stretching of sheets is nonlinear , hence, the investigation
of fluid flow over a nonlinearly stretched surface by various re-
searchers. Cortell [11–12] presented a numerical study of flow and heat
transfer activated by nonlinearly stretched sheet with viscous dissipa-
tion and thermal radiation under the influence of both a constant and a
prescribed surface temperature as well as a heat flux at the boundary. It
was reported that the fluid velocity reduced and the temperature im-
proved as the nonlinear stretching parameter increased. Hayat et al.
[13] studied mixed convection flow prompted by a nonlinearly stret-
ched sheet in a micropolar fluid while Waqas et al. [14] improved on
the work of [13] by investigating dissipative and Joule heating effects
and a convective condition at the boundary.

Furthermore, fluid flow in a porous medium with magnetic field
effects and a chemical reaction is important in various engineering
operations such as in geothermal energy extractions, MHD generators,
thermal insulation engineering, irrigation systems, crude oil extraction,
etc. [6,15]. To this end, Pal and Chatterjee [16] numerically examined a
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flow problem of MHD micropolar fluid with a uniform magnetic field.
The authors transformed the governing equations from partial to or-
dinary differential equations via a similarity conversion analysis and
reported that the magnetic and Darcy parameters caused a reduction in
the velocity of the fluid. Nadeem et al. [17] reported on the influence of
thermal stratification in a porous medium filled with ferromagnetic
Jeffrey kind of fluid along a sheet which stretches linearly in the flow
direction. Recently, Tripatty et al. [18] investigated a problem based on
flow in porous medium of non-Darcian type with the effect of chemical
reaction and non-uniform heat source passing a linearly stretching
sheet. Their equations were solved numerically by means of a shooting
technique combined with the Runge-Kutta method It was underlined in
the work that an increase in the porosity and inertial parameters re-
duced the momentum boundary layer thickness. However, the analysis
was performed on assumption of a no-slip condition at the wall which is
the core idea of the Navier-Stokes model. For some practical situations
however, this assumption fails to hold.

Wang [19] showed that slip flow problems are crucial for stationary
and moving walls on particulate fluids such as emulsions and polymer
solutions where slip may exist between the fluid and the boundary. The
velocity and temperature slip at the boundary surface can be described
as discontinuity in the rate of transport phenomenon over the interface
which has been proposed over two hundred years ago in lieu of the
common no-slip kind of boundary conditions. Fluid slip has significant
practical applications, for instance, it helps in reducing flow resistance
in micro-channels. Also, in heat transfer processes such as in cooling of
electronic devices, fuel cells and heat exchangers, temperature slip also
refereed to as thermal jump is crucial in applications. In some thermal
systems, a small temperature boundary resistance may be required for
enhancing dissipation of heat in electronics while a high thermal slip
can be employed for temperature control [20]. On this ground, Kumar
et al. [21] examined the flow of dissipative and reactive Casson fluid on
a stretching sheet with the influence of multiple slip, radiation and
chemical reaction while an analysis of the effects of multiple slip in an
unsteady flow passing a vertically stretching plate with radiation and
suction/injection influence was reported by Mabood and Shateyi [22].
Similar studies have been made by various scholars owing to the many
applications of such flows [23–26]. However, in these studies the slip
effects were investigated for a linearly stretching sheet without taking
into consideration the case when the stretching of the sheet is nonlinear
which is the basis for this research.

This study therefore investigates the impact of velocity, thermal and
concentration slips on a nonlinearly stretching sheet in a magneto-mi-
cropolar reactive fluid embedded in a porous medium of Darcy-
Forchheimer type with surface mass flux. By means of relevant simi-
larity conversion , the flow equations are transformed from partial to
ordinary differential equations and then integrated numerically via an
iterative technique spectral quasi-linearization method. This problem is
an extension to the work of [18] with the following new features:

• It generalizes that of [18] by considering a nonlinearly stretching
surface instead of linear surface .

• The assumption of a non-uniform magnetic field as against a uni-
form magnetic field in [18].

• The inclusion of surface mass flux (suction/injection) in the present
work which was not considered in the earlier study [18].

• The investigation of multiple slip conditions at the boundary as
against the no-slip conditions examined in [18].

• The cases of Prescribed Surface Temperature (PST) and Prescribed
Surface Concentration (PSC) as against a uniform temperature and
concentration.

2. The problem formulation and modelled equations

The problem in this study is a steady flow on a two-dimensional
nonlinearly stretching permeable sheet in a saturated non-Darcian

porous medium with the working fluid being an electrically conducting
micropolar fluid as described in Fig. 1. A non-uniform magnetic field
acts normal to the flow direction with strength B(x) = B0x(r−1)/2,
where x describes the stretching coordinate with velocity component u.
The induced magnetic and the electric are not considered and the fluid
characteristics are assumed to be isotropic and constant. The velocity
component v is normal to the y direction. The stretching sheet velocity
varies in a nonlinear manner with slip condition given as u = uw + us
where uw = cxr with c > 0 a constant, r is the power law index, us is
the slip velocity, the surface temperature is Tw = T∞ + Axm1 while the
surface concentration is Cw = C∞ + Bxm2 with m1 and m2 representing
the surface temperature and concentration parameters respectively. In
the flow geometry Fig. 1, TBL, SBL, MBL and VBL respectively refers to
thermal, microrotation, solutal and velocity boundary layers.

Incorporating above assumptions with that of boundary layer ap-
proximations, the modelled equations are:
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The incorporated boundary conditions are:
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The non-uniform heat source/sink q ′ ′ ′ in the energy Eq. (5) is
described by [27]

′′′ = − ′ + −∞
⋆

∞q κu
x ν

H T T f H T T[ ( ) ( )]w
r w (7)

with H and H⋆ being the space and heat dependent source/sink re-
spectively. For heat source H > 0 and H⋆ > 0 whereas for heat sink,
H < 0 and H⋆ < 0.

In the Eqs. (1)–(5) the spin gradient, dynamic, vortex and kinematic
viscosity are indicated by γ, μ, μr and ν in that order, while ρ denotes the
density and j stands for micro inertial density. Also T indicates the fluid
temperature while C is the fluid concentration, N shows the component
of microrotation, κ⋆ is the thermal conductivity whereas Kp denotes the

Fig. 1. Flow geometry.
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permeability of the porous medium. Similarly, kc, σ, Cp, Dm symbolize
rate of chemical reaction, electrical conductivity, specific heat at con-
stant pressure and molecular diffusivity in that order. Meanwhile, we
take F = F0x−1, Kp = Kp

⋆x1−r, H = axr−1, H⋆ = bxr−1, kc = k0xr−1 to
represent the Forchheimer constant, permeability of the porous
medium [28–30].

In Eq. (6), the suction/injection term indicated is Vw = V0x(r−1)/2

where V0 is a constant, the slip velocity is indicated by = ∂
∂u cs
u
y1 , the

temperature slip is represented by = ∂
∂T cs
T
y2 , the concentration slip is

denoted by = ∂
∂C cs
C
y3 while h connotes surface boundary parameter

such that 0 ≤ h ≤ 1. A strong concentration is witnessed when h = 0
leading to N = 0. This describes a situation in which the particle
density is large such that in the neighbourhood of the boundary, the
micro-particles cannot rotate or translate [31]. On the other hand, the
case when h = 1/2 is an indication of a weak concentration of micro-
particles and the disappearance of nonsymmetric term of the stress
tensor [32] whereas h = 1 models the flow that is turbulent in nature
[33].

The flow equations are transformed from PDEs to ODEs by means of
Eq. (8) which also reduce the independent variables x, y to a single
variable η [16,34]
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Eq. (1) is satisfied by Eq. (9). Then substituting Eq. (8) into Eqs. (2)–(6)
yields the following:
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However, in order to have purely similarity solution in Eq. (12), we
set m1 = 2r [14,34].

Hence the energy Eq. (12) becomes
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is the suction/injection parameter with fw > 0 and fw < 0 indicating
suction and injection respectively while fw = 0, indicates an im-
permeable sheet. The Darcy and the magnetic field parameters are re-
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whereas the velocity, thermal and concentration slips parameters are
denoted by G1, G2 and G3 in that order. The relevant quantities of en-
gineering importance in this work are the skin friction coefficient Cfx,
the Nusselt number Nux (relating to the transfer of heat at the sheet
surface) as well as Sherwood number Shx (corresponding to mass
transfer at the surface). The corresponding mathematical descriptions
are given in Eqs. (17)–(19).
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where τw, qw and qm denote the surface shear stress, heat and mass flux
in that order. Using Eqs. (8) and (20) the dimensionless skin friction
coefficient is
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3. Solution methodology

For the solution methodology, the spectral quasi-linearization
method (SQLM) is utilized to numerically integrate the coupled non-
linear differential Eqs. (10), (11), (13) and (14). A concise description
of the SQLM can be found in Motsa [35].

In respect to SQLM, Eqs. (10), (11), (13) and (14) are linearized to
give the following iterative scheme:
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Eqs. (23)–(28) make up the SQLM iterative scheme and the equa-
tions are numerically solved via the Chebyshev pseudo-spectral tech-
nique.

Using the Chebyshev pseudo-spectral collocation method, we dis-
cretize Eqs. (23)–(26). Firstly, the semi-infinite domain, η ∈ [0,∞) is
truncated by replacing it with η ∈ [0,ϖ∞], where ϖ∞ ∈ ℤ+.

Secondly, we transform the interval [0,ϖ∞] ⟼ [−1,1], using the
transformation = + ∞η ξ ϖ( 1)1

2 . The derivatives of the unknown vari-
ables f(η), g(η), θ(η) and Φ(η) are computed using the Chebyshev dif-
ferentiation matrix D (see Trefethen [36]), at the collocation points as a
matrix vector product;
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The Gauss-Lobatto points are selected to define the nodes in [−1,1] as:

= ⎛
⎝

⎞
⎠

= … − ≤ ≤ξ πk
N

k N ξcos , 0, 1, , ; 1 1k (31)

Let Ω, Θ and Φ be a similar vector function representing g, θ and Φ
respectively. Then, Higher order derivatives of f, g, θ and Φ are eval-
uated as powers of D, that is

= = = =f η F g η θ η Φ ηD D D D( ) , ( ) Ω, ( ) Θ, ( ) Φs s s s s s s s (32)

Substituting Eqs. (30)–(32) into Eqs. (23)–(26), we obtain the fol-
lowing matrix form:

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

+

+

+

+

F R
R
R
R

Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ
Δ Δ Δ Δ

Ω
Θ
Φ

n

n

n

n

n
f

n
g

n
θ

n
Φ

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

1

1

1

1
(33)

where Δij (i, j = 1,…,2) are + × +N N( 1) ( 1) matrices and Rn
f, Rn

g,
Rn

θ and Rn
Φ are + ×N( 1) 1 vectors, such that:

= + + +

= = = + +

= + + =

=
= + + =
= + = =
= + +

⎫

⎬

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

+ × +

+ × +

+ × +

+ × +

a a a a

α α

α

α α α

α α α
α α
α α α

D D D I

D D

I

D D I

D D I
D I
D D I

Δ diag[ ] diag[ ] diag[ ] diag[ ]

Δ Δ 0 , Δ diag[ ] diag[ ]

diag[ ]

Δ diag[ ] , diag[ ] diag[ ] , Δ Δ

0 ,
Δ diag[ ] diag[ ] diag[ ] , Δ 0 ,
Δ diag[ ] diag[ ] , Δ Δ 0
Δ diag[ ] diag[ ] diag[ ]

n n n n

N N n n

n

n n n

N N

n n n N N

n n N N

n n n

11 1,
3

2,
2

3, 4,

13 14 1 1 21 9,
2

10,

11,

22 6,
2

7, 8, 23 24

1 1

31 15,
2

16, 17, 32 1 1

41 21, 22, 42 43 1 1

44 18,
2

19, 20,

(34)

subject to the boundary conditions

= − = =

+ = =

− = =

− = =

⎫

⎬

⎪⎪

⎭
⎪
⎪

+ = + = +

= + + +

= + +

= + +

F ξ f G F ξ F ξ

ξ h F ξ ξ

G ξ ξ

G ξ ξ

D D D

I D

I D

I D

( ) , Σ [ ] ( ) 1, Σ ( ) 0

Σ [Ω ( ) ( )] 0, Ω ( ) 0,

Σ [ ]Θ ( ) 1, Θ ( ) 0,

Σ [ ]Φ ( ) 1, Φ ( ) 0

n N w i
N

N i N i n N i
N

i n

i
N

n N N i n N n

i
N

N i N i n N n

i
N

N i N i n N n

1 0 1
2

1 0 0 1 0

0 1
2

1 1 0

0 2 1 1 0

0 3 1 1 0

(35)

The SQLM scheme is initialized with the following approximations;

⎜ ⎟= + ⎛
⎝ +

⎞
⎠

− − =
+

−

=
+

− =
+

−

f η f
G

η g η h
G

η

θ η
G

η Φ η
G

η

( ) 1
1

(1 exp( )), ( )
1

exp( )

( ) 1
1

exp( ), ( ) 1
1

exp( )

w0
1

0
2

0
2

0
3

(36)

4. Validation of results

To check the accuracy and validate the numerical code, the com-
putational values obtained for selected controlling parameters were
cross-checked with existing related studies in the literature for limiting
cases. Table 1 shows the comparative analysis of the skin friction
coefficient Cfx obtained using the SQLM with results obtained in [9] via
the FEM for different K when r = 1, λ = φ = M = G1 = 0. Similarly,
for the variation in the non-linear stretching parameter r we have
compared the values of Cfx with those reported in [15] obtained using
the homotopy analysis method (HAM) when K= λ= φ=M= fw= 0

To further validate the accuracy of our results, the heat transfer
rates Nux are compared with studies of Grubka and Bobba [37] and
Chen [38]. Tables 1 and 2 show that the current results compare fa-
vourably with the previous findings in some limiting conditions.

5. Results and discussion

Here, we have plotted the graphs showing the influence of main
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controlling parameters on the dimensionless velocity, microrotation,
temperature, concentration as well as that of skin friction coefficient Cfx

and Nusselt number Nux. The default values of the parameters used are
K = Fs = Ec = m2 = 1, r = 1.5, Pr = 0.7, Sc = 0.5,
M = Da = α = β = γ1 = G1 = fw = h = G2 = G3 = 0.2, unless
otherwise stated.

Figs. 2-3 show the impact of the material (micropolar) parameter K
on the velocity and microrotation fields respectively. It is evidently
shown that the hydrodynamic and the microrotation boundary layer
thickness become thick with a rise in the magnitude of K. This in turn
leads to an increase in the velocity field as well as the microrotation
profiles. Fig. 2 also indicates that the velocity of the micropolar fluid

(K ≠ 0) is higher than that of the classical Newtonian fluid (K = 0).
Figs. 4 and 5 respectively show the impact of the magnetic field para-
meter M on the velocity and temperature functions. In Fig. 4, the fluid
motion reduces as M increases. This is occasioned by the fact that an
application of transverse magnetic field on the fluid which is elec-
trically conducting introduces a resistive Lorentz force which acts
against the fluid flow. However, the removal of magnetic field effect
(M = 0) induces a higher velocity as seen in Fig. 4. On the other hand,
in the presence of a magnetic field, some material properties such as the
temperature increase owing to the influence of M which reduces the
flow velocity and increases the entropy generation. For this reason, the
temperature profiles increase with an increase in M as seen in Fig. 5.

Table 1
Comparison of Cfx with existing results for changes in r when
K = λ = Ec = M = Da = Fs = G1 = 0 and fw = 0.

K [9] Present r [15] Current study

0.0 1.000008 1.00000837 00 0.627555 0.627555
1.0 1.367996 1.36799627 0.2 0.766837 0.766837
2.0 1.621575 1.62157505 0.5 0.889544 0.889544
3.0 1.827392 1.82738216 1.0 1.000000 1.000008
4.0 2.005420 2.00542027 1.5 1.061601 1.061601

3.0 1.148593 1.148593
7.0 1.216850 1.216850
10.0 1.234875 1.234875
20.0 1.257424 1.257424
100.0 1.276774 1.276774

Table 2
Comparison of values of Nux for changes in Pr when
K = λ = Ec = M = G2 = α = β = fw = 0 and r = 1.

Pr [37] [38] Present

0.01 0.0294 0.02942 0.02836573
0.72 1.0885 1.08853 1.08862246
1.0 1.3333 1.33334 1.33333334
3.0 2.5097 2.50972 2.50972158
10.0 4.7969 4.79686 4.79687061
100.0 15.7120 15.7118 15.71196466

Fig. 2. Impact of K on velocity profiles.

Fig. 3. Influence of K on microrotation profiles.

Fig. 4. Influence of M on velocity profiles.
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In Fig. 6 the variation of the Darcy number Dawith the velocity field
is shown. it is noted that the impact of Da is to dampen the momentum
boundary layer thickness and as well as reduce the motion of the fluid
due to increase in the resistance to the fluid flow.

More so, the velocity is higher in the absence of the porous medium
(Da = 0) than when Da ≠ 0.

In a similar manner, Fig. 7 demonstrates that the influence of the
Forchheimer number on the velocity field is the same as that of Da.
Hence, an increase in these two parameters reduces the fluid flow. The
changes in the Eckert number Ec corresponding to viscous dissipation
with temperature are shown in Fig. 8. Here, the temperature field is
enhanced as Ec rises. This trend can be explained in that as Ec rises, heat

Fig. 5. Impact of M on temperature profiles.

Fig. 6. Impact of Da on velocity profiles.

Fig. 7. Variation of Fs with velocity profiles.

Fig. 8. Response of temperature with Ec.
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is produced as a result of the drag between the fluid particles, thus, heat
production inside the fluid rises with additional heating due to viscous
dissipation. Likewise, Fig. 9 shows the effect of the temperature-de-
pendent heat source β on the temperature distribution. The parameter β
produces additional heating which leads to a rise in the fluid tem-
perature. The changes that occur in the concentration field with
changes in the chemical reaction parameter γ1 is given in Fig. 10. In this
case, the solutal boundary layer thickness becomes thin as γ1 increases
leading to a reduction in the concentration profiles. In the absence of γ1,
however, higher concentration profiles are observed. The velocity
profiles against η for changes in the velocity slip parameter G1 are
shown in Fig. 11. Here, the motion of the fluid is reduced with an

increase in the slip parameter, with the no-slip situation (G1 = 0)
having a higher velocity than when there is velocity slip. This is in line
with the earlier results by [25]. The hydrodynamic boundary layer
becomes thin as observed as a result of the imposition of the velocity
slip condition. The momentum generated by the nonlinear stretching
sheet is transferred to the micropolar fluid. However, further from the
sheet, the profiles overlap and the effect of the slip is no longer no-
ticeable.

The impact of varying the thermal slip parameter on the tempera-
ture characteristics across the boundary layer is shown in Fig. 12. The
thermal boundary layer thickness reduces as G2 continues to increase.

Fig. 9. Influence of β on temperature profiles.

Fig. 10. Impact of γ1 on concentration.

Fig. 11. Reaction of velocity profiles with G1.

Fig. 12. Impact of G2 on temperature.
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As a result, the rate at which heat is transferred from the sheet to the
fluid drops and hence, a decrease in the temperature distribution oc-
curs. In like manner, Fig. 13 shows that the concentration profiles be-
have the same way as observed in Fig. 12 when the concentration slip
parameter G3 increases in magnitude. In fact, slip tends to reduce the
fluid flow and consequently acts to dampen the net molecular move-
ment and as such the thermal and concentration distributions are re-
duced. Increasing the nonlinear stretching parameter r reduces the
temperature distribution as shown in Fig. 14. In the same way, the

microrotation profiles diminishe with an increase in r as seen in Fig. 15.
Figs. 16-17 show the response of both the velocity and temperature
fields with changes in the suction/injection parameter fw. In both cases,
an increase in suction fw > 0 reduces the momentum and thermal
boundary layer thicknesses, as seen in Fig. 16 and Fig. 17. However, the
opposite behaviour is observed as the injection parameter fw < 0 in-
creases.

Figs. 18-19 show the combined impact of the nonlinear stretching r
and the material parameter K on Cfx and Nux. It can be observed from
Fig. 18 that increasing values of r leads to a decrease in the skin friction
coefficient but for a fixed r, increasing K tends to cause an increase in
Cfx .

We note also that the rate of heat transfer at the surface Nux ap-
preciates with a rise in r as shown in Fig. 19. Similarly, Nux increases
slightly with a rise in the magnitude of K for a fixed value of r.

Fig. 13. Effect of G3 on concentration profiles.

Fig. 14. Dependence of temperature on r.

Fig. 15. Impact of r on microrotation field.

Fig. 16. Velocity field for changes in fw.
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The change in the Sherwood number Shx with the Schmidt number
Sc and a variation in the chemical reaction parameter γ1 is displayed in
Fig. 20. Observation shows that mass transfer at the surface grows with
a rise in both γ1 and Sc parameters. The change in the Nusselt number
Nux with changes in the space dependent heat source α and the Eckert
number Ec is given in Fig. 21. Here, both α and Ec reduce Nux.

6. Conclusion

This study has investigated the flow of a magneto-micropolar re-
active fluid past a nonlinear permeable stretching sheet in a porous
medium with multiple slips at the boundary. The flow equations were
simplified by means of similarity transformations and solved using the
iterative spectral quasi-linearization method. Validation of the numer-
ical code was by means of comparison of the results with existing re-
sults in the literature for selected parameters. The impact of important
physical parameters on the fluid properties and heat transfer was de-
termined and discussed. The following points have been observed:

• The velocity and microrotation profiles increase as the micropolar
parameter K rises in value. The velocity of micropolar fluid (K ≠ 0)
is comparatively higher than that of a Newtonian fluid (K = 0).

Fig. 17. Variation of fw on temperature field.

Fig. 18. Variation of r & K on Cfx.

Fig. 19. Impact of r & K on Nux.

Fig. 20. Variation of γ1 & Sc on Shx.

Fig. 21. Reaction of Nux with α & Ec.
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However, the magnetic field tends to reduce the fluid velocity while
enhancing the temperature distribution.

• The thickness of the momentum boundary layer reduces and the
flow field decreases with a rise in the velocity slip parameter. The
thermal and solutal fields also fall with thermal and solutal slips
respectively.

• As the nonlinear stretching parameter r grows in magnitude, the
skin friction coefficient Cfx diminishes whereas the heat transfer at
the sheet surface Nux grows as r rises.

• The mass transfer at the sheet surface is enhanced by an increasing
first order chemical reaction parameter γ1 while the heat transfer
tends to drop as the space dependent heat source α increases.

Declaration of Competing Interest

None.
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