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A B S T R A C T

Various industrial and engineering operations are accompanied with the phenomena of heating and cooling and
in such situations, the construction of relevant thermal devices for use in energy and electronic devices is crucial.
For efficient performance of such devices, entropy generation should be reduced in the processes. Hence, this
study focuses on the impact of nonlinear thermal radiation with entropy production on the steady flow of
magneto-micropolar fluid. The flow is generated by a nonlinear stretchable sheet with the influence of variable
fluid properties and convective surface heating condition. The controlling mathematical equations are transmuted
from partial to ordinary differential equations by similarity conversion procedures and then numerically inte-
grated using shooting techniques accompanied by Runge-Kutta scheme. The graphs of the main physical quan-
tities affecting the velocity, temperature, entropy generation and Bejan number are displayed and discussed. The
comparison of the results revealed good relationship with existing ones in literature in the limiting conditions for
special cases. From the analysis, it is found that the growth in the magnitude of Prandtl and Eckert numbers
enhance entropy generation while the dominance of viscous and Ohmic heating irreversibility over heat transfer
irreversibility is observed with a rise in both parameters due to a decline in Bejan number.
1. Introduction

The attention devoted on research of non-Newtonian fluids by sci-
entists and engineers are on the increase in the recent times because these
fluids are practically indispensable in a wide and varied range of engi-
neering and industrial processes. For instance in food processing, crude
oil extraction, pharmaceuticals, etc. Unlike Newtonian fluids, which
display linear proportionality between the rate of shear strain and shear
stress, non-Newtonian fluids typically characterize shear thinning or
thickening behaviour and sometimes manifest a yield stress. Due to
divergent nature of fluid characteristics, the features of all the non-
Newtonian fluids cannot be contained in a single constitutive model,
hence, the development of various non-Newtonian fluid models based on
different physical characteristics or rheology. These include the micro-
polar model, Casson, Jeffery, Maxwell Johnson-Segalman fluid model,
Ostwald De-Wald power law fluid, Giesekus fluid, etc [1].

Notable among the non-Newtonian fluid models is the micropolar
fluid concept invented by Eringen [2] and later extended to
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thermo-micropolar fluid by Ref. [3]. The micropolar fluid is a sub-class of
simple microfluids earlier formulated by Eringen [4]. As reported by Jain
and Gupta [5], this class of fluids are characterized by microstructures
and rigid, bar-like particles suspended in a viscous medium such as
polymeric fluids, liquid crystals, animal blood, suspension solutions, etc.
This model couples the field of macro-velocity and microrotation
together. The possible areas of applications of these fluids in engineering
and industrial processes can be traced to the bio-mechanic and chemical
engineering, extrusion of polymer, slurry technologies, synovial lubri-
cation, arterial blood flows, knee cap mechanics, etc [6].

Due to its crucial applications as in textile production, extrusion of
plastic sheet and metal, drawing of copper wires, glass blowing, drawing
of plastic films and so on, quite a number of researchers have engaged in
the investigation of boundary layer flow generated by either linear or
nonlinear stretchable sheet. Crane [7] pioneered such study by investi-
gating a closed form analytical solution in two-dimensional linearly
stretched sheet in which the velocity is proportional to the distance from
a fixed origin. Such problem has since been improved upon by various
eniyan@unilag.edu.ng (A. Adeniyan).
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researchers [8–11] reporting the influences of different parameters under
diverse assumptions, boundary conditions and geometries. In practical
situations, however, the stretching of the sheet assumes a nonlinear form
as studied by Ref. [12–15].

In engineering and industrial processes that involve high tempera-
tures, the fluid physical properties such as the viscosity and thermal
conductivity cannot be assumed constant due to the fact that high tem-
perature boosts the transport phenomena owing to a decline in the fluid
viscosity across the hydrodynamic boundary layer. This in turn in-
fluences the thermal boundary layer and at such the rate of heat transfer
is also affected. For a better prediction in such situations, it becomes
imperative to investigate the impact of varying viscosity and thermal
conductivity with temperature in the flow and thermal fields. Such study
finds applications in hot rolling, food processing, process of wire drawing
[16].

In this regard, Pal and Mondal [17] discussed the impact of both
varying viscosity as well as thermal conductivity in a mixed convection
flow of a Newtonian fluid passing a stretchable sheet in a porous medium.
Such analysis was also reported by Akinbobola and Okoya [18] on second
grade fluid with heat source/sink while Animasaun [19] investigated
such on Casson fluid over a sheet which stretches exponentially and
Gbadeyan et al. [20] examined Casson fluid flow with convective surface
boundary heating condition and non-uniform viscosity and thermal
conductivity. Besides, various scholars ([21,22]) also addressed fluid
flow and heat transfer problems involving temperature-dependent fluid
properties under diverse conditions and assumptions. Moreover, when
high temperature exists within the flow field, the linear thermal radiation
becomes invalid, in such cases, the use of the more general nonlinear
thermal radiation becomes indispensable. In view of this, Archana [23]
addressed the impact of nonlinear radiation on MHD Casson nanofluid,
Hosseinzadeh et al. [24] analyzed such problem on Maxwell fluid while
Lakshmi et al. [25] carried out such analysis on micropolar fluid.

Meanwhile, these aforementioned reports were done via the first law
of thermodynamic ignoring the second law of thermodynamics which
corresponds to entropy generation which has been found to be depend-
able than those of the first law (see Kobo and Makinde [26]). In heat
transfer problems, entropy generation measures the irreversibility that
occurs in a system through the second law of thermodynamics. It also
measures the level of the work destruction that is available in a system.
Besides, investigations on entropy production explains the sources
through which available energy decays in a system such that those
sources can be minimized as to achieve an optimal energy required.
Bejan [27,28] pioneered such notion while investigating the transfer of
heat and thermal design using the second law of thermodynamics.
Thereafter, various authors have been encouraged to carry out such
analysis on both Newtonian and non-Newtonian fluids.

Makinde and Eegunjobi [29] analyzed entropy production in MHD
Newtonian fluid in porous stretching sheet while Seth et al. [30] dis-
cussed such subject on MHD nanofluid flow past a nonlinear stretching
sheet whereas Tlili et al. [31] conducted a survey on 2D MHD nanofluid
flow influenced by non-Rosseland thermal radiation and entropy pro-
duction via a non-Darcy porous medium. More so, Shit and Mandal [32]
surveyed such problem for Casson nanofluid with effect of radiation
while Srinivasacharya and Bindu [33] examined the problem with the
use of micropolar fluid flowing in a porous pipe with the application of
convective boundary condition. Salawu and Fatunmbi [34] applied third
grade fluid to investigate the subject of entropy production with variable
viscosity and convective cooling in porous medium.

Recently, Salawu and Ogunseye [35] computationally carried out
such analysis via shooting technique on Powell-Eyring fluid with varying
thermal conductivity in a porous channel whereas [36–38] employed
micropolar fluid to tackle irreversibility analysis with the influence of
thermal radiation. More so, Haider et al. [39] numerically addressed such
study on an unsteady exponential stretching surface with slip effects.
However, none of these studies has reported on entropy generation for
the flow of micropolar fluid being generated by nonlinear stretchable
2

sheet with the impact of nonlinear thermal radiation and varying fluid
properties in a porous medium.

Therefore, the aim of this current work is to address the problem of
entropy generation for magneto-micropolar fluid flow activated by a
nonlinear stretchable sheet being influenced by varying fluid properties,
with nonlinear thermal radiation, Joule heating and viscous dissipation
effects in a porous medium. The work is numerically carried out with a
convective condition at the boundary and a weak concentration of the
micro-particles at the surface. To the beat of authors knowledge, this
work is unique since it has not been considered before in the literature.

2. Basic assumptions for problem formulation

To formulate the mathematical model that is applicable for this study,
it has been assumed that:

� The flow is two-dimensional, incompressible and steady on a flat
sheet which is non-permeable but stretches nonlinearly with co-
ordinates (x;y) having corresponding velocity components as (u;v) see
(Fig. 1) while the working fluid is an electrically conducting micro-
polar type in porous medium.

� The xaxis is along the nonlinearly stretched sheet i. e along the flow
direction with yaxis normal to it. The sheet stretches with a velocity
u ¼Uw ¼ cxrwhere c > 0 and r is the nonlinear stretching parameter.

The governing equations of the steady flow of magneto-micropolar
fluid as well as microrotation, heat transfer taking cognizance of the
stated assumptions with the boundary layer approximations and ther-
modynamic second law are listed as follows [36,41,42].

∂u
∂xþ

∂v
∂y ¼ 0; (1)

u
∂u
∂xþ v

∂u
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1
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∂
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(5)

The relevant boundary conditions for this study are as follows:

u ¼ Uw ¼ cxr ; v ¼ 0;B ¼ �p
∂u
∂y;�k∞

∂T
∂y ¼ hf

�
Tf � T

�
aty ¼ 0;

u → 0;B → 0; T → T∞ as y → ∞:

(6)

The deviation of the micropolar fluid model from the classical New-
tonian fluid can be measured by the size of the vortex viscosity parameter
μr , thus, when μr ¼ 0, Eqs. (2) and (4) are decoupled from Eq. (3) and at
such, the model under investigation with the results obtained relates to
that of Newtonian fluid model. Similarly, the range of validity of the
surface boundary parameter pis 0 � p � 1, the electric conductivity is
assumed to be σ ¼ σ0xr�1while Kpis a function of xgiven as Kp ¼
K⋆
p x

1�rand the heat transfer coefficient hf ¼ h1xðr�1Þ=2[43]. It is pertinent
also to note that the nonlinear stretching parameter r ¼ 0 mirrors uni-
formly moving sheet while r ¼ 1 corresponds to linearly stretching sheet



Fig. 1. The sketch of the physical model.

� A uniform external magnetic field Bois normal to the flow direction while the induced magnetic field is not taking into cognizance due to sufficiently low magnetic
Reynolds number.

� The radiative heat flux in x-direction is negligible compared to y-direction. The temperature difference within the micropolar fluid layer is not sufficiently small,
hence, nonlinear Rosseland approximation (Makinde et al. [40]) in an optically dense opaque medium is applied. The radiative heat flux is given as qr ¼ �
4σ⋆
3k⋆

∂T4

∂y such that ∂qr
∂y ¼ ∂

∂y

�
4σ⋆
3k⋆ 4T

3∂T
∂y

�
.

� The dynamic fluid viscosity is inversely related to temperature while the thermal conductivity vary linearly with it as respectively expressed in Eqs. (7) and (8). The
temperature of the sheet is upheld by a convective heating from a hot fluid having temperature Tfwith a convection heat transfer coefficient hfwhile the working
fluid temperature is below boiling point.

� A finite size control volume at an arbitrary point in a two dimensional convection flow field is assumed for the entropy generation in Eq. (5) with the use of second
law of thermodynamics [36].
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and r > 1 portrays nonlinearly stretching sheet.
The variation of the viscosity with temperature is described in Eq. (7)

as [44,45].

1
μ
¼ 1
μ∞

½1þ βðT �T∞Þ�¼ ζðT � TrÞ; (7)

where ζ ¼ β
μ∞
;Tr ¼ T∞ � 1

β. Here, βrelates to the fluid thermal property

while ζand Trremain constants. In the like manner, the micropolar fluid
thermal conductivity is assumed to vary in the linear form as [45,46].

kðTÞ¼ k∞

�
1þ δ

T � Tf

Tf � T∞

�
; (8)

where the varying thermal conductivity is symbolized by δ and k∞ de-
notes the free stream thermal conductivity. The quantities in Eq. (9) are
employed to transmute Eqs. (1)–(6) into ODEs [12–14].
η ¼ y
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Tf � T∞
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þ Q;Q ¼ Tr � T∞
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�ν
c

�
xð1�rÞ; γ ¼

�
μðTÞ þ μr

2

�
j:

(9)
On substituting Eq. (9) into the governing Eqs. (1)–(6), the continuity
Eq. (1) attains validity. Besides, cognizance of Eqs. (7) and (8) the gov-
erning Eqs. (2)–(5) yield the underlisted ODEs:
3
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�
1þ δθ þ Nrð1þ ðθw � 1ÞθÞ3�θ’’þ 3Nrðθw � 1Þθ’2ð1þ ðθw � 1ÞθÞ2 þ δθ’2þ

Prf θ’þ
�

Q
Q� θ

þ K
�
PrEcf ’’2 þ

�
2

r þ 1

�
ðM þ DaÞf ’2 ¼ 0:

(12)

The conditions at the boundary also become
η ¼ 0 : f ’ ¼ 1; f ¼ 0; g ¼ �pf ’’; θ’ ¼ �αð1� θÞ;
η → ∞ : f ’ ¼ 0; g ¼ 0; θ ¼ 0:

(13)

The non-dimensional form of the entropy generation Eq. (6) with r ¼
1 translates to
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Ns¼ 1

ðθ þΩÞ2
�
1þ δθþNr

�
1þðθw � 1ÞθÞ3�θ’2 þ EcPr

ðθ þΩÞ
Q

Q� θ
þK f ’’

2

� �

þ EcPr
ðθ þΩÞ ðMþDaÞf ’2;

(14)

The sources of entropy production in Eq. (5 or 14) includes: (i) Heat
Transfer Irreversibility (HTIR) or the conduction effect indicated by the
first term on the right hand side, (ii) Fluid Friction Irreversibility (FFIR)
described by the second term and (ii) the combined influence of Magnetic
and Darcy Force Irreversibility (MDFIR) is denoted by the third term of
Eq. (14). Another important irreversibility distribution measure which of
interest to engineers is known as the Bejan number Be. It provides an
information on which irreversibility source is important and dominating
others in the system. It is defined as the ratio of entropy production due to
heat transfer to the overall entropy generation. Hence, the Bejan number
Becan be described as

Be¼HTIR
Ns

¼ HTIR
HTIRþ FFIRþMDFIR

; (15)

or
Be ¼
�
1þ δθ þ Nrð1þ ðθw � 1ÞθÞ3�θ’2ðθ þΩÞ�2

1þ δθ þ Nrð1þ ðθw � 1ÞθÞ3θ’2ðθ þ ΩÞ�2 þ EcPrðθ þΩÞ�1
	�

Q
Q�θ þ K

�
f ’’2 þ ðM þ DaÞf ’2


; (16)

Table 1
Parameters and their description.

Symbol Description Symbol Description

T Fluid temperature u;v Velocity components in x;
ydirection

ν∞ Free stream kinematic
viscosity

hf Coefficient of heat transfer

ρ∞ Free stream fluid density Tf Surface sheet temperature
μ∞ Free stream viscosity Uw Velocity at the sheet
μr Vortex viscosity c Nonlinear stretching rate
σ Electrical conductivity j Micro inertia density
cp Specific heat capacity γ Spin gradient viscosity
k Thermal conductivity T∞ Temperature at free stream
σ⋆ Stefan-Boltzmann constant k⋆ Mean absorption coefficient
B0 Magnetic field strength σ0 Constant
Kp Porous medium

Permeability
K⋆
p ;h1 Constants

p Surface boundary
parameter

B Microrotation component

M Magnetic field parameter α Surface convection parameter
K Material parameter Ns Total entropy generation
Pr Prandtl number Sgc Characteristics entropy

generation
Q Viscosity variation

parameter
Ω Temperature difference

parameter
Ec Eckert number Nr Radiation parameter
Da Darcy number θw Wall temperature excess ratio
The incorporated terms/parameters appearing in Eqs. (10)–(14), (16)
are designated in Eq. (17) as:

M ¼ σ0B2
o

cρ∞
;Nr ¼ 16T3

∞σ
⋆

3k⋆k∞
;Q ¼ � 1

β
�
Tf � T∞

�;K ¼ μr
μ∞

;Pr ¼ μ∞cp
k∞

;Ns ¼ Sgen
Sgc

Ec ¼ U2
w

cpðTw � T∞Þ; α ¼ h1
k∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

cðr þ 1Þ

s
; Sgc ¼ ck∞

ν∞
;Ω ¼ T∞

ðTw � T∞Þ; θw ¼ Tw

T∞
:

(17)

The various symbols incorporated into the governing equations are
listed in Table 1.

3. Numerical method and its validation

The numerical solution for the current study has been carried out by a
means of a computer algebra symbolic Maple 2016 package. This has
been applied in solving Eqs. (10)–(12) and (14) and (16) together with
the accompanied boundary conditions (13). The numerical procedure is
rooted in the fourth order Runge-Kutta techniques associated with the
shooting scheme. To check the authenticity of the numerical code
developed for the governing equations in this work, the computational
values obtained for some parameters have been validated with related
published works in the literature as relates to the Nusselt number Nuxand
coefficient of the skin friction Cfxin the limiting cases. Table 2 describes
the comparison of computational values of Nuxwith those reported by
Cortell [12] and Waqas et al. [14] for changes in the Eckert number
Ecand the nonlinear stretching parameter rwhen Pr ¼ 1:0 with Q →
∞and in the absence of Da;K;M;and R. It is remarked that there exists a
good relationship between the comparison. Moreover, it is conspicuously
shown that growing values of both Ecand rdiminish the rate of heat
transfer at the sheet surface as noticed from this table.
4

Meanwhile, Table 3 depicts the computational values of Cfxas
compared with the data reported by Lu et al. [47] and Waqas [14] for
varying the nonlinear stretching parameter rwhen Q → ∞and K ¼ 0 ¼
M ¼ Ec ¼ Nr ¼ Da. An excellent agreement also exists between the
values obtained in this work with those authors in the limiting
conditions.

Besides the tabular comparisons made in Tables 2 and 3, the varia-
tions of velocity profiles f ’ðηÞ and that of surface temperature distribu-
tion θðηÞin the absence of porous medium, radiation parameter, thermal
conductivity term and for uniform viscosity have been graphically
compared with the results of [14]. The results agree well as shown in
Figs. 2 and 3. In addition to those parameters absent in Ref. [14], the
results also in the absence of material term and magnetic field parameter
have been plotted with that of [12] for variation in f ’ðηÞ and θðηÞ as
displayed in Figs. 4 and 5. In both cases, the graphs reveal a good
agreement.

4. Analysis and discussion of results

The impact of some selected controlling physical quantities on the
fluid flow, energy transfer and their reactions on entropy generation
Nsand the Bejan number Beare graphically described in Figs. 2–15 with
appropriate analysis and discussion. The computational values adopted
are: Q ¼ 3:0;r ¼ K ¼ M ¼ 0:5 ¼ Da ¼ p ¼ Ω;Ec ¼ 0:1;Nr ¼ 0:3;Pr ¼
0:72and α ¼ 0:3. Unless otherwise indicated on the plots.

The combined reaction of the material micropolar Kand the magnetic
field terms on the velocity distribution are described in Fig. 6. Here, the



Fig. 3. Temperature θðηÞas compared with [14].

Fig. 4. Comparison of f ’ðηÞwith [12].

Table 2
Computed values of Nuxcompared with [12,14] for varying rand.Q → ∞

Ec r [12] [14] Present

0:0 0.2 0.610262 0.6102 0.6101823
0.5 0.595297 0.5952 0.5951843
1.5 0.574537 0.5748 0.5747162
3.0 0.564472 0.5648 0.5647053
10.0 0.554960 0.5550 0.5549407

1.0 0.2 0.574985 0.5752 0.5752582
0.5 0.556623 0.5568 0.5566777
1.5 0.530966 0.5310 0.5309857
3.0 0.515777 0.5181 0.5053849

Table 3
Computed values of Cfxas compared with existing works of [14,47] for variation
in rwhen K ¼ M ¼ 0 ¼ Da ¼ Kand.Q → ∞

r [47] [14] Present

.0 0.627547 0.6276 0.6275058

.2 0.766758 0.7668 0.7667732

.5 0.889477 0.8895 0.8899665

.0 1.000000 1.0000 0.9999999

.5 1.061587 1.0616 1.0615092

.0 1.148588 1.1486 1.1484923

.0 – 1.2349 1.2347739

Fig. 2. Velocity profiles.f ’ðηÞ
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growth in the material parameter Kthickens the momentum boundary
layer and causing the fluid velocity to rise due to reduction in the vis-
cosity. On the contrary, a rise inMlowers locomotion due to the drag-like
magnetic force (Lorentz force) introduced with the application of the
magnetic field normal to an electrically conducting micropolar fluid. This
force acts against the fluid motion, thereby reducing the velocity. Thus,
magnetic field can be employed to control the flow motion which is
applicable in areas such as hydromagnetic power generation and elec-
tromagnetic coating of wires [48].

Fig. 7 exhibits the response of the temperature profile to variation in
the radiation term Nr and M. It is shown that a rise in Nrenhances
temperature distribution both in the presence and absence of M. How-
ever, the growth in temperature profile is more pronounced when Mis
5

present due to an extra heating associated with the imposition of the
magnetic field parameter M. Fig. 8 showcases the temperature field
constructed against η for variation in the wall temperature excess ratio or
heating parameter θwin the presence and absence of M. In line with
expectation, it evident from this plot that temperature is raised with
growing values of θwas a result of a rise in the operating temperature
difference Tf � T∞ increases with. θw

Fig. 9 shows the sketch of temperature profile against ηfor the com-
bined variation of the thermal conductivity δand Prandtl number Prterms
vary. Clearly, a rise in δtends to boost the fluid temperature while



Fig. 6. The velocity field for varying.K&M

Fig. 7. Impact of Nron temperature.

Fig. 8. Temperature field for.θw& M

Fig. 5. Comparison of θðηÞwith [12].
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Prlowers the temperature distribution due to a decline in the thermal
boundary layer thickness. The temperature declines with higher Pr due to
the fact that fluid with high Pr has lower thermal diffusivity and at such,
the surface temperature declines. The response of the velocity field to
variation in the Darcy number Da together with the viscosity variation
parameter Q is displayed in Fig. 10. The fluid velocity is lowered due to
escalating values of Da owing to the fact that as the strength of Da in-
creases, there is a stronger resistance to the fluid motion. Similarly, it is
shown that the fluid velocity is higher for the case of uniform viscosity
Q → ∞ whereas the fluid motion decelerates in the presence of Q as
clearly shown Fig. 10.

Fig. 11 demonstrates the character of the Biot number or surface
6

convection parameter αon the temperature distribution. Evidently, rising
values of αencourages the growth of the temperature. Physically,
αdefines the ratio of intrinsic thermal resistance of the sheet to that of the
boundary layer, hence, a rise in αindicates the dominance of internal heat
transfer resistance of the sheet over that of the surface of the sheet. This
report is in consonance with that of [14,15].

Figuress 14 and 15 portray the reaction of both Prand Econ the en-
tropy generation Nsas well as on Bejan number Be. In Fig. 14, it is shown
that the non-dimensional entropy production advances with rising Pr.
This is so because a rise in Prfacilitates higher temperature gradients in
the boundary layer and at such, Nsis enhanced.

The plot showing the influence of material parameter K on entropy



Fig. 10. Response of velocity with.Da&Q

Fig. 11. The reaction of αon temperature.

Fig. 12. Impact of K&Ωon entropy.Ns

Fig. 9. The reaction of δ & Prwith temperature profile.
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generation rates Ns is constructed in Fig. 12. With a rise in the magnitude
of K, there is an increase in the entropy productionNs. The strength of the
fluid friction and magnetic-Darcy irreversibility over that of heat transfer
is observed in Fig. 13 with rising values of K. This is so because as K rises,
the Bejan number Be falls irrespective of the value of the temperature
difference parameter Ω.

In the like manner, a rise in Eckert number stimulates growth in
Nsdue to the frictional heating effect. This implies that Ecshould be
reduced in order to minimize Nswhich is the principal aim of the second
law of thermodynamics. Both parameters (Ec&Pr) lower the Bejan
number Beas showcased in Fig. 15. Observation reveals that for any value
of η, the Be depreciates with a rise in both Prand Ec, the implication of
7

this is that the frictional heating due to viscous dissipation irreversibility
and that of the magnetic-Darcy force irreversibility dominate the heat
transfer irreversibility.

Figs. 16 and 17 described the effects of wall temperature excess ratio
or heating parameter θwon both Nsand Bewith changes in dimensionless
temperature difference parameter Ω. Rising values in θwenhances the
production of entropy whereas Ωacts to lower it. In Fig. 17, it is revealed
that Berises with an increase in θwnear the wall but away from it, the
trend is reversed. It implies therefore that heat transfer irreversibility is
stronger near the stretching sheet with growth in θw.

Figs. 18 and 19 showcase how the micropolar material parameter
Kand Mreacted with the microrotation and temperature profiles. The



Fig. 14. Entropy generation for material parameter.K

Fig. 15. Benjan number for.K

Fig. 16. Entropy generation for radiation parameter.Nr

Fig. 13. Reaction of Befor changes in.K&Ω

E.O. Fatunmbi, A. Adeniyan Results in Engineering 6 (2020) 100142
microrotation distribution is seen to decline for growth in the
Kmagnitude while the magnetic field parameter facilitates growth in the
microrotation distribution. On the other hand, increase in micro-particles
as well as application ofMraises the temperature of the fluid as displayed
in Fig. 19.

5. Conclusion

In conclusion, the present study has reported numerically on entropy
generation, irreversibility distribution, fluid flow and heat transfer in
magneto-magnetic fluid of micropolar type over a nonlinear and non-
permeable stretchable sheet. The model has being influenced by vari-
8

able viscosity and thermal conductivity with the imposition of nonlinear
thermal radiation and viscous dissipation among others. The numerical
values of some selected parameters gotten from the numerical compu-
tation exhibited a good relationship when authenticated by direct com-
parison with some related existing data available in the literature for
limiting situations. From this study, the underlisted points are derived:

� The volumetric rate of entropy generation advances with growing
values of material parameter K, heating parameter θw, Prandtl Prand
Eckert numbers Ecwhereas it declines with growth in the dimen-
sionless temperature difference parameter Ω.



Fig. 18. Impact of Kon microrotation.

Fig. 19. Influence of Kon temperature profiles.Fig. 17. Bejan number for.Nr
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� The heat transfer irreversibility is less important compared to the
fluid friction and magnetic-Darcy irreversibility with growth in the
material term K, Prandtl Prand Eckert numbers Ecwhile such trend is
reversed with a rise in heating parameter θw.

� The thermal boundary layer becomes thicker and temperature ap-
preciates with rising values of the radiation Nr, magnetic field M,
surface convection α, the micropolar material Kand the heating pa-
rameters θwwhereas it declines with advancing magnitude of Pr.

� The thickness of the momentum boundary layer becomes thin as the
magnitude of magnetic field M, Darcy number Daand the viscosity
variation term Q advance whereas the opposite occurs with higher
values of the material parameter K.
9
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