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 Background:Frequently, an estimated mean squared error is the only indicator or 
yardstick of measuring error in a prediction. However, the statement that the future 

values falls in an interval with a specified probability is more informative. Prediction 

intervals have this probabilistic interpretation, which is similar to that of tolerance 
intervals . Two resampling methods yield prediction intervals that obtain some types of 

asymptotic invariance to the sampling distribution. The resampling procedure proposed 

here utilizes the bootstrap method. The bootstrap interval derives from an empirical 
distribution generated using bootstrap resampling. The bootstrap is a resampling 

technique whose aim is to gain information on the distribution of an estimator. 

Objective: The bootstrap method for measures of Statistical accuracy such as standard 
error, bias, prediction error and to complicated data structures such as autoregressive 

models are considered. We estimated the parameters and the bootstrap t confidence 

interval  with an autoregressive model fitted to the real data. Results:Bootstrap 
prediction intervals provide a non parametric measure of the probable error of forecast 

from a standard linear autoregressive model. Empirical measure prediction  error rate 

motivate the choice of these intervals, which are calculated  by an application of the 
bootstrap  methods, to a time series  data. Conclution: Bootstrap prediction intervals 

represent a useful addition to the traditional set of measures to assess the accuracy of 
forecast. The asymptotic properties of the intervals do not depend upon the sampling 

distribution, and the bootstrap results suggest that  the invariance approximately holds 

for relatively all sample sizes.  
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INTRODUCTION 

 

 One of the most important objectives in the analysis of a time series economic data is to forecast it future 

values. Even if the final purpose of time series modeling is the control of a system, it operation is usually based 

on forecasting, Wei (1989). 

 The term forecasting is used more frequently in recent time series literature than the term prediction. 

However, most forecasting results are derived from a general theory of linear prediction developed by 

Kolmogorov (1941), Wiener (1949), Kalman (1960), Yaglom (1962), and Whittle (1983). 

 Frequently, an estimated mean squared error is the only indicator or yardstick of measuring error in a 

prediction. However, the statement that the future values falls in an interval with a specified probability is more 

informative. Prediction intervals have this probabilistic interpretation, which is similar to that of tolerance 

intervals , Stine (1982), (1985). Two resampling methods yield prediction intervals that obtain some types of 

asymptotic invariance to the sampling distribution. The resampling procedure proposed here utilizes the 

bootstrap method, Efron (1979, 1982). The bootstrap interval derives from an empirical distribution generated 

using bootstrap resampling. The bootstrap is a resampling technique whose aim is to gain information on the 

distribution of an estimator.  

 This article investigates and describes the basis of bootstrap theory as a measure of statistical accuracy such 

as bias and prediction error with confidence intervals. 

 Suppose that our data consists of a random sample from an unknown probability distribution F on the real 

line, 

X1, X2 ,X3, --------------------, X n ~ F         (1.1) 
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 We compute the sample mean 
n

x

x

n

i

i
  and wonder how accurate it is as an estimate of the true mean 

θ=EF(x). if the second central moment of F is μ2(F)=EFX
2
- (EFX)

2
, then the standard error  σ(F;n,¯x),that is the 

standard deviation of x¯ for a sample of size n from distribution F, is 

σ(F)=[μ2(F)/n]
1/2

   (1.2) 

 The shortened notation σ (F) = σ(F;n,x¯) is allowable because the sample size n and statistics of interest x¯, 

are known, only F being unknown. The standard error is the traditional measure of x  accuracy. Unfortunately, 

we cannot actually use (1.2) to assess the accuracy of  x  , since we do not know μ2(F), but we can use the 

estimated standard error, 

σ¯= [μ2¯/n]
1/2

   (1.3) 

 Where   

 

1

1

2

2










n

xx
n

i

i

 , the unbiased estimate of   μ2(F). There is a more obvious way to estimated 

σ(F). Let F^ indicate the empirical probability distribution; F^: probability mass i/n on 

 X1, X2 Xn    (1.4)  

Then we can simply replace F by F^ in (1.2), obtaining  

σ^= σ(F^) = [μ2 (F)/n]
1/2  

(1.5)  

as the estimated standard error for x¯. This is the bootstrap estimate. 

Since  

μ2= μ2 (F^)= Σ (xi- x)
2
 /n    (1.6) 

σ^  is not quite the same as  σ¯, but the difference is too small to be important in most application, Efon and 

Tibshirani (1986). 

 Standard errors are crude but useful measure of statistical accuracy. They are frequently used to give 

approximate confidence intervals for an unknown parameter θ. 

 Θ  θ^    σ^
()

   (1.7) 

 Where Z 
()

 is the 100   percentile point of a standard normal variate. The standard  interval (1.7) is based 

on taking literally the large sample normal approximation (θ^- θ)/σ^ ~ N(O,1).There many ways to construct 

bootstrap confidence intervals for any given bootstrap. In this paper we employ the bootstrap t confidence 

interval proposed by Olatayo (2010). Most common statistical methods were developed in the 1920s and 1930s, 

when computation was slow and expensive. Now that computation is fast we can hope for and expect change in 

statistical methodology. This paper discusses one such potential change. 

 

The boostrap estimate of standard error: 

 Let F be the empirical distribution, putting probability 1/n on each of the observed values of xi, i= 1,2,-------

----------, n. A bootstrap sample is defined to be a random sample of size n drawn from F^, the bootstrap 

algorithm works by drawing many independent bootstrap samples, evaluating the corresponding bootstrap 

replications, and estimating the standard error of θ^ by the empirical standard deviation of the replications. The 

result is called bootstrap estimate of standard error, denoted by bSe ˆ , where B is the number of bootstrap 

sample used. 

The limit of bSe ˆ , as B goes to infinity is the ideal bootstrap estimate of 

  *ˆˆlim FF
B

Sesebse 


)
                                           (2.1) 

 The fact that bSe ˆ  approaches SeF  as B goes to infinity amounts to saying that an empirical standard 

deviation as the number of replications grown large. The ideal bootstrap estimate SeF *̂  and its approximation 

bSe ˆ  are sometimes called non parametric bootstrap estimate because they are based on F̂ , the non parametric 

estimate of the population F. Efron and Tibshirani (1993). 

 The bootstrap algorithm for estimating standard error proceeds in three steps. 

 Select B independent bootstrap samples X,
1
,X

2
,X

3
, --- X

B
, each consist of n data value drawn with 

replacement from X. 

i Evaluate the bootstrap replication corresponding to each boostrap sample 

   *ˆ* , 1,2,3........             bb S X b B     (2.2) 
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ii Estimate the standard error  ̂Fse  by the sample standard deviation of the B replications 

   
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ˆ ˆˆ * * .             
1

ˆ*
ˆwhere    * .
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SeB b
B

b
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







 
      






  (2.3) 

 It is easy to see that as B -, bSe ˆ  is the ideal bootstrap estimate of  ̂Fse , the bootstrap estimated 

of standard error. 

 

The Boostrap Estimate Of Bias: 

The bias of ̂ =S(X) 

 As an estimate of  , is defined to be the difference between the expectation of   and the value of the 

parameter  . 

      FtXSEbiasbias FF   ,ˆ  

 Where the real valued parameter  =t(F) and the statistic ̂ = s(x)respectively. A large bias is usually an 

undesirable aspect of an estimator’s performance. We resigned to the fact that ̂  is a variable estimator of  , 

but usually we don’t want the variability to be overwhelmingly on  the low side or on the high side. 

 In this article we use the bootstrap to asses the bias of any estimator θ= S(x). the bootstrap estimate of bias 

is defined to be the estimate biasF, we obtain by substituting F̂  for F in (2.4) 

   *

ˆF F
Bias E S X E F  

 
  (2.4) 

We generate independent bootstrap samples 
BXXX *2*1* ......,.........,  as in section 2.0, evaluate the  

bootstrap replication  bXsb *)(*ˆ   and  approximate the bootstrap expectation 

  *
ˆ XSE
F

  by the average 

   
 *

1

1

ˆ ˆ* . *

B
b

B

b

b

S X

b
B B

  



 


   (2.5) 

The bootstrap estimate of bias based on the B replication 

   

   

*

F̂
ˆˆ  B   IS in (3.2) with * .  substituted for E

ˆ ˆˆ  B * .

bias S X

bias t F





 
 

 
  (2.6) 

 The algorithm in section 2.0 applies exactly to the calculation of (2.6), except that at the last step we 

calculate    Ft ˆ.*ˆ   rather than BSe ˆ  of course we calculate both BSe ˆ  and B   ŝbia  from the same set of 

bootstrap replications. 

 

Prediction Intervals from The Boostrap: 

Suppose F                 X =(X1, X2,----------------------Xn) and require a 1-2  prediction interval for a new 

observation FZ  , that is, we would like random variables a(X) and b (X) so that 

    Pr 1 2Fob a X Z b X       (2.7) 

 It is important to note that probability in (2.7) refers to the randomness in both Xi   f, and FZ   

We find a value a(x) so that 

 ˆPr F

x z
ob t

s
 

 
  

 
  (2.8) 
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Our prediction interval is then obtained by pivoting expression (2.8) giving 

     ˆ ˆ1 ,x t s x t S


      (2.9) 

if we assume that F is standard normal with mean N and unknown variance 
2 , we obtained 

   

n
tt n

1
1ˆ 1  


 

where 
 

1nt   is the  percentile of the  t- distribution with n-1 degree of freedom. This differs from a 

confidence interval for M=E (X) in that the factor 
n

1
1  appears rather than 

n

1
. The extra “1” account for 

the  variance of the new observation Z. 

the bootstrap approach resample 
*ˆ XF   and 

*ˆ ZF    independently, and then estimates 
 t̂  – by the 

empirical 
th  quartile of the values 

* *

*

x Z

S


 (2.10) 

where 
*X  and S

*
 are the mean and sample deviation of the bootstrap sample 

*X . thus as in (2.9) we have  

* *

^ ^ ^ ^ ^ ^
* *

1 1
2 2

[ ( , ( ) ]e eS t S t    
 

    (2.11) 

respectively, for bootstrap prediction interval 

 
Table 1: 

 
Methods 

USD to NGN GBP  to NGN 

95% Confidence Interval 95% Confidence Interval 

Standard 

Boostrap – t 

[160.0169, 160.4071] 

[159.9819 , 160.4181] 

[260.1240 , 260.4692] 

[259.1300 , 260.4692] 

 

RESULTS AND DISCUSSIONS 

 
 The data used to illustrate an application of t he bootstrap are the daily exchange rates of US dollars and 

British pound sterling to Nigeria naira. 

  The bootstrap samples at step (i/(iii) of section 2 algorithm using proposed truncated geometric bootstrap 

method by Olatayo (2010),was implemented and the estimate of standard error, bias and prediction interval error 

were computed.  

 In order to assess the accuracy of an estimator. Measures of statistical error, such as standard error for USD 

to NGN  is 0.1263 and GBP to NGN  is 0.4068,and their bias are 0.001857 and -0.005811 respectively. Both the 

standard errors and bias are alright, but USD to NGN is more better and preferable to GBP to NGN.     

 A bootstrap 95% confidence interval for the parameter of the variable is as given above with wider coverage, 

than normal confidence interval. Thus the goal is to construct a prediction interval for the new set of values of 

the variables. A bootstrap 95% prediction interval based on our robust estimator is given by Table 1, the interval 

covers a wider range compared with confident interval. Bootstrap inference based on a robust estimator seems 

preferable to confidence interval with an inference procedure that only cover limited range for forecasting or 

prediction purpose. 

 

Autoregressive time series model: 

 The data are the daily exchange rates of USD (United State of American Dollar) to NGN (Nigerian Naira) 

and GBP (Great Britain Pound Sterling) to NGN. Let the account for t
th 

 day be Xt  after centering the data that 

is replacing xt by xt - x  we fit a first order autoregressive model 

 

 .0,N iid where

...................................................................................

2

1








 tt t

xx
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 The estimate ̂  turned out to be 0.1379 for USD to NGN  and the estimate ̂  of GBP to NGN is  0.6758, 

therefore the model for USD to NGN  is 

ttt xx  11379.0  

 and for GBP to NGN will be  

ttt xx  1675.0 . 

 The  forecast were generated based on the  fitted models, which reveals that the USD to NGN will 

appreciate better than GBP to NGN in the nearest features.  

 

Conclusion: 
 Lets  pause to consider the suitability or otherwise of the variables in the models   analyzed. So far the 

attempt is estimating the exchange rate of US$ to Nigerian N  with that of exchange rate of  Great Britain £ to  

Nigerian N  , or put in another form, we are trying to explain a major financial economic factor of Nigeria 

relative to the US and Great Britain economies. This is an “antipodal” theory of financial economy, which is the 

measure of economic strength of a nation. From the forecast values, attention must be given to pound sterling, in 

other to improve its values, whereas, with time Naira to dollars will appreciate.  

 Bootstrap prediction intervals represent a useful addition to the traditional set of measures to assess the 

accuracy of forecast. The asymptotic properties of the intervals do not depend upon the sampling distribution, 

and the bootstrap results suggest that the invariance approximately holds for relatively all sample sizes.  
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