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Pattern Formation in Competition-Diffusion equation 
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Abstract 

Tiger stripes, leopard spots, angelfish stripes, patterns on a zebra, patterns in sunflower (Helianthus) etc. 
are common patterns in real life. According to Alan Turing in 1952 [14], these patterns can be explained by 
some reaction-diffusion equation corresponding to the system. Conditions for patterns in the competition-
diffusion equation in 1D are obtained in this paper. 
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1 Introduction 

Alan Turing in 1952 proposed that patterns observed in nature came as a result of interaction between two 

chemicals (which he called morphogens) which diffuse at different rates. One acts as the activator while the 

other acts as the inhibitor. This situation is possible if the system is stable in the absence of diffusion but 

unstable in the presence of diffusion. Several works on this subject include [1, 3, 4, 5, 7, 8, 10, 11, 12]. 

The reaction diffusion equation in 1D is of the form 

 𝜕𝑢

𝜕𝑡
= 𝑓 𝑢, 𝑣 + 𝐷1

𝜕2𝑢

𝜕𝑥2
 

(1.1) 

 𝜕𝑣

𝜕𝑡
= 𝑔 𝑢, 𝑣 + 𝐷2

𝜕2𝑣

𝜕𝑥2
 

(1.2) 

where f(u,v) and g(u,v) are the reaction parts,𝐷1
𝜕2𝑢

𝜕𝑥2  and 𝐷1
𝜕2𝑢

𝜕𝑥2are the diffusion parts and D1 and D2 are the 

diffusion coefficients. Equations (1.1) and (1.2) can be written in the matrix form as 

 𝑤𝑡 =  𝐹 𝑤 +  𝐷𝑤𝑥𝑥 , (1.3) 

with 

  and  (1.4) 

Turing mechanism has been justified for population dynamics and several authours have worked on it [2, 6, 9, 

15]. The application of the Turing mechanism to competition model is considered in this paper. The 

competition model is given as 



International Journal of Advanced Scientific and Technical Research                    Issue 5 volume 7, Nov. –Dec. 2015  

Available online on   http://www.rspublication.com/ijst/index.html                                                     ISSN 2249-9954 

©2015 RS Publication, rspublicationhouse@gmail.com Page 53 

 

 , (1.5) 

 , (1.6) 

where ˙  . By introducing the non-dimensional quantities 

, 

the 6-parameter system (1.5) and (1.6) becomes a 3-parameter non-dimensionalised system 

  (1.7) 

 . (1.8) 

Suppose (u0,v0) is a steady state of the non-dimensionalised competition system of equations and putting 

 f (u,v) = u(1 −u −β1v), and g (u,v) = αv (1 −v −β2u), (1.9) 

and 

 , 

the system is linearised to become 

 𝑑𝑢

𝑑𝑡
=  𝑢 − 𝑢0 𝑓𝑢 +  𝑣 − 𝑣0 𝑓𝑣 

(1.10) 

 𝑑𝑣

𝑑𝑡
=  𝑢 − 𝑢0 𝑔𝑢 +  𝑣 − 𝑣0 𝑔𝑣  

(1.11) 

which can be written in matrix form as 

𝑤𝑡 =  𝐴𝑤 

and the characteristic equation is the quadratic equation obtained from 

|A −λI| = 0. 

Using the Routh Hurwitz criteria [13], we therefore require for stability in the absence of diffusion that 

Tr(A) = fu+ gv<0 (1.12) 

det(A) = fugv−fvgu>0. (1.13) 

2 Diffusion-driven instability 

We attempt to analyze the patterns formed from the competition-diffusion at the steady states. To start with, 

we seek a solution of the system 1.3 to be of the form 

  where  and wt= λw (2.1) 

(and𝑘 =
𝑛𝜋

𝑟
is the wavenumber on the interval [0,r]) and we linearizeF(w) to get 

F(w) = Aw. 

With these, (1.3) becomes, 
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 . (2.2) 

Since 𝑤 ≠  0, then the whole problem simply reduces to the eigenvalue problem 

 
  
𝑓𝑢 𝑓𝑣
𝑔𝑢 𝑔𝑣

 − 𝑘2  
𝐷1 0
0 𝐷2

 − 𝜆  
1 0
0 1

  = 0 
(2.3) 

Let 

 
𝐽 =  

𝑓𝑢 − 𝑘2𝐷1 𝑓𝑣
𝑔𝑢 𝑔𝑣 − 𝑘2𝐷2

  
(2.4) 

 

then the characteristic equation is  

λ2 −Tr(J)λ + det(J) = 0 

where 

(2.5) 

Tr(J) = fu+ gv−k2 (D1 + D2) 

and 

(2.6) 

 . (2.7) 

Since we want instability in the presence of diffusion, then by Routh Hurwitz criteria, we require that 

 Tr(J) = fu+ gv−k2 (D1 + D2) >0 (2.8) 

or 

 𝑑𝑒𝑡 𝐽 =  𝐷1𝐷2𝑘
4 − 𝑘2(𝑓𝑢𝐷2 +  𝑔𝑣𝐷1)  + 𝑓𝑢𝑔𝑣 − 𝑓𝑣𝑔𝑢 < 0. (2.9) 

We require that𝑓𝑢 + 𝑔𝑣 < 0 from (1.12), and since −k2 (D1 + D2) <0, then Tr(J) = fu+ gv−k2 (D1 + D2) <0 and 

consequently, condition (2.8) cannot hold. We are therefore left with 

(2.9). Rewrite (2.9) as 

 h(m) = D1D2m2 −(fuD2 + gvD1)m+ fugv−fvgu, (m = k2). (2.10) 

The minimum of h(m) occurs at the critical wavenumber kc 

 
𝑚 = 𝑘𝑐

2 =
𝑓𝑢𝐷2 + 𝑔𝑣𝐷1

2𝐷1𝐷2

> 0 
(2.11) 

 ⇒ 𝑓𝑢𝐷2 + 𝑔𝑣𝐷1 > 0 (2.12) 

and we therefore require that 

 
𝑕𝑚𝑖𝑛 = −

 𝑓𝑢𝐷2 + 𝑔𝑣𝐷1 
2

4𝐷1𝐷2

+ 𝑓𝑢𝑔𝑣 − 𝑓𝑣𝑔𝑢 < 0 
(2.13) 

 
𝑓𝑢𝑔𝑣 − 𝑓𝑣𝑔𝑢 <

 𝑓𝑢𝐷2 + 𝑔𝑣𝐷1 
2

4𝐷1𝐷2

 
(2.14) 
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The conditions, therefore, for diffusion-driven instability are  

 fu+ gv < 0, from (1.12) (2.15) 

 fugv−fvgu > 0, from (1.13) (2.16) 

 fuD2 + gvD1 > 0, from (2.12) (2.17) 

 . from (2.14) (2.18) 

Solving (2.10), we find that the unstable wavenumbers must fall between 

  (2.19) 

and 

 
𝑤 =  𝑐𝑘𝑒

𝜆𝑡𝑊𝑘

𝑛2

𝑘=𝑛1

where𝑊𝑘 =  
cos 𝑘𝑥
cos 𝑘𝑥

  
(2.20) 

where n1 is the least integer greater than k1 and n2 is the greatest integer smaller than k2. 

3 Analysis of the competition-diffusion equation 

We obtain the competition-diffusion equation by putting the competition equation as the reaction part of the 

reaction-diffusion equation. The model, therefore, is 

 𝜕𝑢

𝜕𝑡
= 𝑢 1 − 𝑢 − 𝛽1 + 𝐷1

𝜕2𝑢

𝜕𝑥2
 

(3.1) 

 𝜕𝑣

𝜕𝑡
= 𝛼𝑣 1 − 𝑣 − 𝛽2𝑢 + 𝐷2

𝜕2𝑣

𝜕𝑥2
 

(3.2) 

It is easy to see that there are two steady states for the competition model which are (0,0) and

. This model is useful in studying the pattern that occurs in a market where there 

are competition between two different products. 

 

3.1 Impossible pattern at the origin 

The origin corresponds to the state where none of the products is available in the market. If we consider the 

steady state at the origin (0,0), we have 

 fu= 1, fv= 0, gu= 0, gv= α. (3.3) 

Putting (3.3) into equations (2.15) through (2.18), we require that 

 1 + 𝛼 < 0, 𝛼 > 0 (3.4) 
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𝐷2 + 𝛼𝐷1 > 0, 𝛼 <

 𝐷2 + 𝛼𝐷1 
2

4𝐷1𝐷2

 
(3.5) 

Clearly, equation (3.4) cannot hold at the same time. Therefore, if the system starts from the origin (or 

somewhere close to the origin), no pattern is formed. This is the situation experienced when two competing 

products are not available in the market or only few pieces of each product are available in the market. There 

is no pattern to expect since there are no product to sell or all the few products (from the two products) get 

sold. This is just a trivial case. 

3.2 Pattern at  

At this steady state, we have 

 

Substituting fu,fv,gu,gvinto (2.15) through (2.18), we require that 

fu+ gv= −u0 −αv0 <0 ⇒ u0 + αv0 >0 (3.6) 

fugv−fvgu= αu0v0(1 −β1β2) >0 (3.7) 

fuD2 + gvD1 = u0D2 + αv0D1 <0 ⇒ u0 + αv0D <0 

and 

(3.8) 

 . (3.9) 

Equation (3.9) implies 

 
𝛼𝑢0𝑣0 1 − 𝛽1𝛽2 <

 𝑢0𝐷2 + 𝛼𝑣0𝐷1 
2

4𝐷1𝐷2

 
(3.10) 

 
𝐷2 −

2𝑢0

𝛼𝑣0

 1 − 2𝛽1𝛽2 𝐷 +  
𝑢0

𝛼𝑣0

 
2

> 0 
(3.11) 

Remark 3.1𝐷 =
𝐷1

𝐷2
≠ 1, because otherwise inequality (3.8) becomes 

u0 + αv0 <0 (3.12) 

which contradicts (3.6). 

The choice of the parameters β1and β2 that will satisfy the four conditions are 

 or 0  

Consider when = 3 so that Condition 3.6 and 3.7 become 

 
 −1 + 4𝛼 > 0 ⇒ 𝛼 >

1

4
and  𝛼 −1  4  −

1

2
 > 0 ⇒ 𝛼 > 0 

(3.13) 

so that 

  (3.14) 

Condition 3.8 becomes 

  (3.15) 
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Condition 3.11 becomes 

 

which implies that 

  or  (3.16) 

Combining 3.15 and 3.16, we have 

 . (3.17) 

Thus, we have the range of values of α and D as 

 and 0  

and the unstable wavenumbers fall between 

 

4 Conclusion 

There are two steady states of the competition model and they are (0,0) and . Our analysis 

revealed that the system cannot exhibit any pattern if it starts from anywhere near the origin. But, for the 

second steady state, patterns will occur if 

 or 0  

So, with specific values of  and β2 = 3, we need 

 and 0 . 

and figures (4.1) below show the feasible region. The shaded regions are the regions where any choice of 

𝛽1, 𝛽2 , 𝛼 and D will produce a pattern and the pattern produced when 𝛽1 =
1

2
, 𝛽2 = 3, and 𝛼 = 1 is shown in 

figure (4.2) below 

 

Figure 4.1: Feasible region 
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Figure 4.2: Pattern in the competition-diffusion equation with  
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