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ABSTRACT 

The problem of a steady two dimensional MHD stagnation point flow and heat 

transfer of an incompressible micropolar fluid over a stretching surface in porous 

medium with radiation, heat generation/absorption and dissipation is 

investigated. The governing partial differential equations are transformed to 

ordinary differential equations using similarity transformation and the resulting 

ordinary differential equations are nonlinear. These nonlinear ordinary 

differential equations are then solved using Runge-Kutta method alongside the 

Shooting method. The effect of the included parameters on the fluid flow and heat 

transfer characteristics are presented and discussed. 

Keywords: Micropolar fluid, stagnation flow, magnetohydrodynamics, 

similarity solution 

Introduction 

 Micropolar fluids belongs to the class of fluids with non-symmetric stress tensor that are called 

polar fluids, these are fluids with microstructures and have the ability to shrink and expand, 

change their shape and may rotate independently of the rotation and movement of the fluids. 

Physically, micropolar fluids may represent fluids consisting of rigid, randomly oriented fluids 

(or spherical) particles suspended in a viscous medium, where the deformation of the particles 

is ignored. (Lukaszewick,1999). 

The problem of flow and heat transfer over a stretching surface has gained wide application in 

many engineering processes such application include hot rolling paper, production, wire and 

fibercoating, foodstuff processing, glass blowing continuous casting of metal and spinning of 

fiber and so on. 

Since introduction of the model of micropolar fluids by Eringen (1966) it has attracted the 

attention of many scientists, engineers, mathematicians and others. The attractiveness and 
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power of the model of micro-polar fluids come from the fact that it is both a significant and 

simple generalization of the classical Navier-Stokes, model which does not describe the 

physical properties of polymer fluids, colloidal solutions, suspension, liquid crystals and fluid 

containing small additives animal blood, paints etc. 

A stagnation flow describes that the situations where the fluid motion near the stagnation region 

exist on a solid body and the fluid moves towards it. The stagnation region encounters the 

highest pressure, highest heat transfer and highest rate of mass deposition. The two dimensional 

flow of a fluid near stagnation point was first considered by Hiemenz (1911) who observed 

that the Navier-Stokes equation governing the flow can be reduced to a third order ordinary 

differential equations by similarity transformation. The problem was extended to the 

axisymmetric case by Homann (1936). Raptis (1998) investigated the flow of micropolar 

stationary fluid past a continuously moving plate in the presence of radiation. 

The problem of stagnation flow of a micropolar fluid towards a vertical permeable surface in 

which the surface temperature and velocity are assumed to vary linearly was considered by 

Ishak et al (2008) with the distance from the stagnation point. Olanrewaju et al (2011) 

investigated a steady MHD flow towards a stagnation point on a vertical surface immersed in 

a micropolar fluid in the presence of thermal radiation. Mahmoud (2011) considered the two 

dimensional stagnation point towards a permeable stretching surface subject to a transverse 

magnetic filed in the presence of heat generation/absorption.  

Yacob and Ishak (2011) considered the steady two-dimensional flow of a micropolar fluid over 

a shrinking sheet in its own plane where the shrinking velocity is assumed to vary linearly with 

the distance from a fixed point on the sheet. The problem was later extended to two dimensional 

stagnation point flow over a shrinking sheet immersed in an incompressible micropolar fluid 

(Ishak, Lok & Pop, 2012). 

Kazeem et al (2011) studied stagnation point flow past a porous stretching sheet.   Bachok, 

Ishak and Pop (2013) investigated the similarity solution of stagnation point flow toward a 

stretching/shrinking sheet with a convective boundary condition. 

Hydromagnetic flow of a conducting micropolar fluid over a plane wall with heat transfer was 

considered by Attia and Ewis (2011). Hussain et al (2013) investigated the boundary layer flow 

towards a permeable stretching sheet.  Aurangzaib et al (2013) studied unsteady MHD mixed 

convection flow with heat and mass transfer over a vertical plate in micropolar fluid saturated 

porous medium. 

The purpose of this study is to investigate the effect of magnetohydrodynamic and heat transfer 

flow on two dimensional stagnation point embedded in a porous medium in the presence 

radiation, suction/blowing, viscous dissipation and heat generation/absorption. This is an 

extension of Sayed etal (2015).The numerical solution has been sought to examine the nature 



of fluid flow, microrotation and heat transfer. The effects of included parameters on 

temperature, velocity, microrotation of the fluid have been discussed. 

 2.0 Analysis and Method 

The governing equations under the above assumption are: 

Continuity equation 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 … … … … … … . . (1) 
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Energy Equation 
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But at free stream 

U(x) = Ue (x) 

equation (2)implies 
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hence equation (2) becomes 
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the governing equations with the boundary conditions are: 
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subject to: 

𝑢 = 𝑎𝑥,       𝑣 = 𝑣𝑤 ,      𝜇 = −𝑚
𝑑𝑢

𝑑𝑦
,        𝑇 = 𝑇𝑤 𝑎𝑡 𝑦 = 0 



𝑈 → 𝑈𝑒(𝑥) = 𝑏𝑥,          𝜇 → 𝑜.       𝑇 → 𝑇𝑤 𝑎𝑠 𝑦 → ∞ 

where x and y are Cartesians coordinates u and v are velocity components in the direction of x 

and y respectively 

T: the temperature of the fluid in the boundary layer 

𝜇 = the micro rotation vector (angular velocity) 

p = dynamic viscosity 

J: micro inert density 

r: spin gradient viscosity 

k: vortex viscosity 

𝜎 : electric conductivity 

𝛽0: Magnetic field strength 

q: radiative heat flux 

Ap: specific heat at constant pressure 

K: thermal conductivity 

m is a constant and 0 ≤ m ≤ 1. The case when m is 0 is called strong concentration (Yacob & 

Ishale, 2012) indicates 𝜇= 0 near the wall, represents concentration particles flows in which the 

micro elements close to the wall surface are unable to rotate the care 𝜇 = 1
2⁄  indicates the 

vanishing of antisymmetric part of the stress tension and indicates weak concentrations 

(Ahmadi, 1976). the case, m – 1 is used for he modelling of turbulent boundary later flows 

(Peddieson, 1972) 

As used by many authors, we assume that r = (𝜇 +
𝑥

2
) 𝑓 = 𝜇 (1 + +

𝑥

2𝜇
) 𝑓 = 𝜇 (1 + +

𝑥

2𝜇
) 

where (𝑘 =
𝑥

𝜇
) 𝑗 is he material parameter micropolar parameter), 𝑗 =

𝑢

𝑎
 is the reference length 

where 𝑣 =
𝜇

𝜌
 (kinematic viscosity). 

the assumption is involved to allow the field of equation predicts the correct behaviour in the 

limiting case when the microstructure effect become negligible and the total spin 𝜇 reduces to 

the angular velocity (Ahmadi, 1976). 

Using Rosseland approximation the radiation heat flux is (Mohamed & Abo-Dahab, 2009) 

𝑞𝑟 =
4𝜎 ∗ 𝜕𝑇4

3𝑎 ∗ 𝜕𝑦
 

where 𝜎 ∗ is the Stefan BoltzMann constant and 𝑎 ∗ is the mean absorption co-efficient. 

Assuming that the temperature within the flow are sum all such that T2 can be expanded in 

Taylor series about T∞ 

𝑇4  =  4𝑇∞
4 − 3𝑇∞   + ⋯ … . (Neglecting higher order term) 

𝜕𝑞𝑟

𝜕𝑦
= −

160∗
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𝑇∞

3
𝜕2𝑢
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Introduction stream function defined as 𝑢 =
𝜕𝑢

𝜕𝑦
, 𝑣 =

𝜕𝑢

𝜕𝑥
 

Continuity equation (1) is automatically satisfied 

I order to solve equation (1) – (5), we use the following similarity transformation (Olanrewaju 

et al., 2011) to transform the governing partial differential equations to ordinary differential 

equation 

𝑛 = (
𝑎

𝑣
)𝑦

1
2⁄

,         𝜑 = (𝑎𝑣)
1
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𝑣
)

1
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𝑈 =
𝜕𝜑

𝜕𝑥
= −(𝑎𝑣)

1
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𝜕𝑢
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𝑎

𝑣
)

1
2⁄  𝑎𝑥𝑓11(𝑛),

𝜕𝑢
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𝜕2𝑢

𝜕𝑦2
=

𝑎2𝑥

𝑣
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𝜕𝑛

𝜕𝑦
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𝑎2𝑥

𝑣
𝑔1(𝑛) 

𝜕𝑢

𝜕𝑥
= 𝑎 (

𝑎

𝑣
)

1
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𝑔(𝑛) 

𝜕𝑇

𝜕𝑥
= 0 

𝜕𝑇

𝜕𝑦
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𝑎

𝑣
)

1
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(𝑇𝑤 − 𝑇𝑤)𝜃1(𝑛) 

𝜕𝑇

𝜕𝑦2
=

𝑎

𝑣
(𝑇𝑤 − 𝑇𝑤)𝜃11(𝑛) 

6) using (7) in (2) – (5) we obtain 

(1 + 𝐾)𝑓111 + 𝑓𝑓11 + 𝐴2 − 𝑓1 + 𝐾𝑔1 + 𝑚(𝐴 − 𝑓1) + 𝐷𝑎(𝐴 − 𝑓1) = 0 … … . . (8) 

(1 +
𝑘

2
) 𝑔11 + 𝑓𝑔1 − 𝑓1𝑔 − 𝐾(2𝑔 + 𝑓11) … … … … (9) 

(1 +
4

3
𝑅𝑛) 𝜃11 + 𝑃𝑟𝑓𝜃1 + 𝑚𝐵𝑟(𝐶 − 𝑓1)2 + 𝐵𝑟𝑓112

+ 𝐵𝑃𝑟𝜃 = 0 … … … . (10) 

subject to 

𝑓(0) = 𝑓𝑤 , 𝑓1(0) = 1, 𝜃(0) = 1 𝑎𝑡 𝑦 = 0  

𝑓1(∞) = 𝐴, 𝜃(∞) = 0 … … … … … … … … … (11) 

where 𝑀 =
𝜎𝐵𝑜2

𝑎𝑝
 is the magnetic parameter,  

𝐵 =
𝑄

𝑎𝑝𝐴𝑝
 is dimensionless heat generation / absorption parameter. 

𝐵𝑟 =
𝜇𝑢2

𝐾(𝑇𝑤−𝑇𝑤)
 is the Brikman number 

𝑃𝑟 =
𝜇𝐴𝑝

𝐾
 is the prandtl number 



𝑅𝑛 = 4
𝜎∗𝐾𝑇∞

3

𝑎
 is the radiation parameter 

𝐴 =
𝑏

𝑎
 is the stretching parameter 

𝑓 = −
𝑉𝑤

√𝑎𝑣
 is the suction (> 0) or blowing (< 0) 

the skin friction coefficient Cf is defined as Cf =
𝑇𝑤

𝜌𝑢2 … … … … . . (12) 

Where the wall shear Tw is defined as Tw = [(𝜇 + 𝐾)
𝜕𝑢

𝜕𝑦
+ 𝑘𝑁] 𝑦 = 0 … … … … … . . (13) 

using (7) in (13) we obtain 

𝐶𝑓𝑅𝑒𝑥

1
2⁄

= (1 +
𝐾

2
) 𝑓11(0) 

Where Rex is the local Raynolds number defined as Rex = 
𝑥𝑢

𝑣
 

 

3.0    Results 

 

Table 1: The variation of 𝑓 𝑎𝑛𝑑 𝑓′ and  at 𝐴 = 0.5,1.0, 𝑎𝑛𝑑 1.5  while other parameters 

are constant 

 A = 0.5 A = 1.0 A = 1.5 

𝜼  𝒇 𝒇′ 𝜽 𝒇 𝒇′ 𝜽 𝒇 𝒇′ 𝜽 

0 0 1.00 1.000 0 1.0000 1.000 0 1.000 1.000 

1 0.7366 0.5819 0.6588 1.0000 1.000 0.5835 1.3039 1.4592 0.5226 

2 1.2715 0.5098 0.6588 2.0000 1.0000 0.2726 2.27916 1.4988 0.1964 

3 1.7752 0.5008 0.1939 3.0000 1.0000 0.09943 4.2913 1.4999 0.0509 

4 2.2755 0.5000 0.0820 4.0000 1.0000 0.0275 5.7913 1.4999 0.0088 

5 2.7755 0.5000 0.0250 5.0000 1.0000 0.0052 7.2913 1.4999 0.0009 

6 3.7755 0.5000 0. 6.000 1.0000 0 8.7913 1.5000 0 

 

Table 2: The variation of 𝜃 at 𝑘 = 1,3 𝑎𝑛𝑑 9 where other parameters are constant 

 𝑲 = 𝟏 𝑲 = 𝟐 𝑲 = 𝟑 

𝜼  𝒇 𝒇′ 𝜽 𝒇 𝒇′ 𝜽 𝒇 𝒇′ 𝜽 

0 0 1.0000 1.0000 0 1.0000 1.0000 0 1 1 

1 2.9631 3.9221 0.33629 2.82388 3.8316

4 

0.34494 271313 3.7349 0.35218

0 

2 6.96665 4.0069 0.045568 6.809034 4.0152

2 

0.048616

6 

6.665000 4.017785

9 

0.05140

9 

3 10.96834 4.00005 0.002156

3 

10.81431

5 

4.0005 0.002399 10.67350 4.00170 0.00263

6 

4 14.96835

4 

4.00000

0 

0.000003 14.81442

9 

4.0000

0 

0.00003 14.67795 4.00002 0.00004 

5 18.96835

4 

4.00000

0 

0.00000 18.81442

9 

4.0000

0 

0.00000 1867395

7 

4.00000 0.00000 

6 22.96835 1.71886 0.0000 22.17442

9 

4.0000

0 

0.0000 22.67395

7 

4.00000 0.00000 



 

Table 3:      Comparison of skin friction of   𝐶𝑓 𝑅𝑒𝑥
1/2 the material parameter 𝐾 = 0 for 

various values of the stretching parameter A 

A Ishak and Mazar (2010) Sayed et al( 

2015) 

Present 

Result 

0.1 - 0969381 -0.969436 -0.9643623 

0.2 -0.918108 -0918102 -0.91811319 

0.5 -0.667265 -0.667256 -0.66726372 

1 0.00000 0.00000 0.0000000 

2 2.017531 2.017481 2.0175028 

3 4.729283 4.72923 4.7292823 

 

Fig.13 shows the variation of magnetic parameter (𝑀) on the flow, it shows that increasing the 

values of 𝑀 decreases the velocity profile 𝑓′  

Fig.12 presents the temperature profile of 𝜃 for various values of Pr corresponding decrease 

the temperature profile.  

Fig.10 shows the effect of Darcy number (𝐷𝑎 ) on the velocity profile 𝑓′ and reveals that 

increasing the values of Darcy number decreases the velocity profile and reduces the thickness 

of the velocity boundary layer.  

Fig.9 shows the effect of Darcy number (𝐷𝑎) on the profile which reveals that the thermal 

boundary layer thickness decreases with increasing in the values of Darcy number (Da).  

Fig.8 presents the velocity profile f for various values of Darcy number. It shows that as the 

Darcy number increases beyond 1 the thickness of the velocity boundary layer increases.  

Fig.7 illustrates the effect of suction (𝑓𝑤) parameter on the velocity profile. It is noticed that 

the velocity boundary layer thickness decreases with increase in the suction (𝑓𝑤) parameter up 

to when 1 is 2 after which there is a uniform distribution of the velocity profile.  

Fig 5a shows the effect of Darcy number on the profile it shows that increasing the value of 

Darcy number decreases the velocity profile (f).  

Fig.5b and 7 present the velocity profile of 𝑓𝑎𝑛𝑑 𝑓′ respectively for various values of 𝑓𝑤  

Fig.6 illustrates the effect of suction (𝑓𝑤) parameter on the temperature (𝜃) it is noticed that as 

the suction parameter (𝑓𝑤) increases there is an increase in the temperature distribution on the 

profile.  

This indicates that wall transpiration (suction or injection) provides an effective means of 

controlling the flow and heat transfer characteristics.  

Fig.5c reveals the effect of the suction parameter on the velocity profile (𝑓).It is noticed that 

increasing the suction parameter (𝑓𝑤), the velocity profile (𝑓) is decreased.   



From Fig. 14. It can be seen that an increase in 𝑀 leads to an increase in the temperature profile. 

This is due to the fact that application of a magnetic field to an electrically conducting fluid 

produced a drag-like force known as Lorentz force. This force brings decrease in the fluid 

velocity and the microrotation but increase in the fluid temperature.  

Fig. 15 and 16 depict the effect of the material parameter 𝐾 on the dimensionless microrotation 

(g). It is noticed that near the plate the microrotaton (g) decreases with increase in 𝐾, while the 

reverse is true far away from the surface. Moreover, the velocity increases as the materials 

parameter (K) increase.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.0   Conclusion 

We have considered MHD stagnation point flow and heat transfer of a micropolar fluid over a 

stretching surface embedded in a porous medium with radiation, viscous dissipation and heat 

generation. Similarity transformation was used to transform the governing partial differential 

equations of the problem to ordinary differential equations. The resulting equations with the 

boundary conditions are solved by fourth order Runge-Kutta method alongside with Shooting 

method .The effects of material parameter, magnetic parameter, Prandtl number, radiation 

parameter, Darcy number, heat generation parameter and suction or injection on the 

temperature and velocity profiles are considered. 

Some of the discoveries are as follow: 

 Increase in the material parameter K shows that there is decrease in velocity profiles 

𝑎𝑛𝑑 𝑓′ . 



 Increase in the material parameter K shows that there is decrease in the temperature 

profiles 𝜃 

 Temperature profile 𝜃 decreases when the stretching parameter (𝐴) increases 

 Velocity profiles 𝑓𝑎𝑛𝑑 𝑓′ increase with increasing values of the stretching parameter 

 When radiation parameter increases there is a decrease in temperature profile. 

 Temperature profile increases with increase in Darcy number. 
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