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Abstract
This study investigates heat and mass transfer in magnetohydrodynamic micropolar fluid
flow past a vertical stretching permeable sheet in a porous medium with constant heat
and mass fluxes. A magnetic field of uniform strength is applied normal to the stretching
sheet, the governing partial differential equations are transformed into nonlinear cou-
pled differential equations using similarity transformation. The resulting equations are
solved by Runge-Kutta method alongside shooting method. The effects of various em-
bedded flow parameters such as magnetic parameter, Soret and Dufour effects, thermal
radiation, Prandtl, Schmidt and Eckert numbers, micropolar (material) parameter, suc-
tion/injection and permeability are found on velocity, temperature, concentration and
microrotation profiles. The influence of the flow parameters on the Skin friction, wall
couple shear stress, Nusselt and Sherwood numbers are also obtained and presented in
tables. In addition, it was found that micropolar fluid exhibits a reduction in shear
stresses as compared to Newtonian fluids
Keywords: Stretching sheet; non-Newtonian fluid; magnetohydrodynamic; micropolar
fluid; permeable sheet

1. Introduction
Eringen (1966, 1972) developed the theory of micropolar fluids and as well derived the
constitutive equations for the theory of thermo-micropolar fluids. Micropolar fluids are
fluids with dilute suspensions of rigid micro-particles with individual motions that support
stress and body moments which constitutes a substantial generalization of the Navier-
Stokes model and opens up a new field, of potential applications. Micropolar fluid theory
is capable of describing complex rheological behaviour of fluids and provides a good math-
ematical model for some natural and industrial fluids such as polymeric fluids, biological
fluids, particles suspension, animal blood and exotic lubricants which cannot be ade-
quately described by the classical Navier-stokes theory. Its applications in a number of
industrial processes, such as extrusion of polymer, the flow of exotic lubricants, colloidal
suspensions and the cooling of metallic plate in water bath have also boosted the interest
of researchers in studying it (Rahman, 2009). A detailed review, on the theory and ap-
plications of micropolar fluids, was given by Lukaszewicz (1999) where micropolar fluids
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were described as having a complex nature and individual fluid particles may be of dif-
ferent shapes and may shrink and/or expand, occasionally changing shapes and rotating
independently of the rotational movement of the fluid. The boundary layer flow of such
fluids was first studied by Peddieson and McNitt (1970) and Wilson (1970).

The flow and heat transfer over stretching surfaces has useful and practical applica-
tions in engineering activities such as extrusion of plastic sheet, glass blowing, textile and
paper production. Similarly, the study of magnetohydrodynamics (MHD) heat and mass
transfer over stretching surfaces has found applications in engineering processes such as
hot rolling, the extrusion of polymer sheet from a die, the cooling of metallic sheets and a
lots more. In such processes, the properties of the final products depend on the kinematic
of stretching and the rate of cooling. The rate of cooling can be controlled by drawing
the sheets in an electrically conducting fluid subjected to a magnetic field. Crane (1970),
pioneered work on stretching sheet, Gupta and Gupta (1977) extended the work to in-
clude heat and mass transfer on stretching sheet with suction or blowing. Many other
researchers (Grubka and Bobba, 1985; Elbashbeshy, 1998; Quasim et al., 2013) have also
investigated fluid flows past stretching surfaces.

The study of heat and mass transfer analysis with chemical reaction, heat genera-
tion/absorption in the boundary layer flow is of practical importance due their impor-
tance in chemical processes and hydrometallurgical industries, for instance, food process-
ing, manufacturing of ceramics and polymer production (Das, 2012; Mishra et al., 2016).
Heat generation/absorption influence may change the temperature distribution of the
fluid flow and in consequence affect various engineering devices. To this end, Krishna
and Reddy (2018) discussed the unsteady MHD free convection in a boundary layer flow
of an electrically conducting fluid through porous medium subject to uniform transverse
magnetic field over a moving infinite vertical plate in the presence of heat source and
chemical reaction. Krishna and Reddy, (2018) have investigated the simulation on the
MHD forced convective flow through stumpy permeable porous medium (oil sands, sand)
using Lattice Boltzmann method. Krishna and Jyothi (2017) examined the Hall effects on
MHD Rotating flow of a visco-elastic fluid through a porous medium over an infinite os-
cillating porous plate with heat source and chemical reaction. Similarly, Srinivasacharya
and Mendu (2014) studied free convection in MHD micropolar fluid with radiation and
chemical reaction effects. Bhattacharyya and Layek (2012) studied MHD boundary layer
flow with diffusion and chemical reaction over a porous flat plate with suction/blowing.
Mohammed and Abo-Dahab (2009) examined heat and mass transfer in MHD micropolar
flow over a vertical moving porous plate in a porous medium with heat generation using
perturbation technique.

The aim of the present work is to investigate free convection heat and mass transfer
of an electrically conducting non-Newtonian micropolar fluid flow over a stretching per-
meable sheet with constant heat and mass flux in a saturated Darcy-Forchheimer porous
medium. The influences of radiation, viscous dissipation, heat source and chemical reac-
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tion are also considered. The system of partial differential equations governing the fluid
flow is transformed into coupled nonlinear ordinary equations by similarity transforma-
tions and the resulting equations are numerically solved by shooting method alongside
fourth order Runge-Kutta method.
2. Formulation of the Problem
Consider a steady, two dimensional flow of viscous, incompressible free convective, electri-
cally and thermally radiating and electrically conducting micropolar fluid over a stretching
permeable plate in a saturated Darcy-Forchheimer porous medium. A uniform magnetic
field of strength Bo is applied normal to the direction of flow in which (x, y) describes the
stretching and the transverse coordinates with corresponding velocity component (u, v).
The constant heat flux (−k ∂T

∂y
) = A and the constant mass flux (−Dm∂C

∂y
) = B are

considered and the uniform plate temperature Tw > T∞, where T∞ is the free stream
temperature. The fluid stretching velocity uw is assumed to vary proportional to the dis-
tance x i.e. uw = ax, where a is positive constant. All the fluid properties are isotropic
and constant except the density variation with temperature and concentration in the
body force term which is approximated by Boussinesq approximation.

Fig. 1 physical model and coordinate system

Under the above assumptions, the boundary layer and invoking the Boussinesq approx-
imations, the governing equations of continuity, momentum, microrotation, energy and
concentration of the fluid flow are respectively given as:
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u
∂C

∂x
+ v

∂C

∂y
= Dm

∂2C

∂y2
+
DmkT
Tm

∂2T

∂y2
− kr (C − C∞) . (5)

The boundary conditions are as follows:

u = uw = ax, v = vw, N = −m∂u

∂y
,−k∂T

∂y
= A,−Dm∂C

∂y
= B at y = 0,

u −→ 0, N −→ 0, T −→ T∞, C −→ C∞ as y →∞.
(6)

Here, µ, ν, ρ, κ, j, γ and vw, are dynamic viscosity, kinematic viscosity, fluid density, vortex
viscosity, micro inertial per unit mass, spin gradient viscosity and suction/injection term.
Similarly, T,C,N, k,Bo and Kp are the fluid temperature, fluid concentration, component
of microrotation vector normal to x, y plane, thermal conductivity, magnetic field intensity
and permeability of the porous medium. Others are: kr, σ, Cp, T∞, C∞, Tm, Dm, q, A,
B and qr represent rate of chemical reaction, electrical conductivity, specific heat at
constant pressure, free stream temperature, and the free steam concentration, mean fluid
temperature, molecular diffusivity, volumetric rate of heat generation, constant heat flux
per unit area, coefficient of mass flux per unit area and radiative heat flux respectively.
Also, F = F0x

−1, βT = β0x
−1, βc = β?0x

−1 represent Forchheimer constant, coefficient of
thermal expansion, coefficient of volumetric expansion, and F0, β0 and β?0 are constants
(see Makinde, 2010).

Also, m is a surface boundary parameter with 0 ≤ m ≤ 1. The case when m = 0
corresponds to N = 0, this represents a strong concentration such that the micro-particles
close to the wall are unable to rotate. When m = 1

2
, this indicates weak concentration of

micro-particles and the vanishing of anti-symmetric part of the stress tensor and the case
when m = 1 is used for modelling turbulent boundary layer flows (see Peddieson, 1972;
Ahmadi, 1976; Jena and Mathur, 1981).
γ =

(
µ+ κ

2

)
j, is the spin gradient viscosity. This assumption has been invoked to allow

the field of equations to predict the correct behaviour in the limiting case when the
microstructure effects becomes negligible and the total spin N reduces to the angular
velocity (Ahmadi, 1976).
Using Rosseland approximation,

qr = −4σ?

3α?
∂T 4

∂ȳ
, (7)

is the radiative heat flux (Brewster, 1992; Akinbobola and Okoya, 2015).
Where, α? is the mean absorption coefficient and σ? is the Stefan-Boltzman constant. We
suppose that there exists sufficiently small temperature difference within the flow, such
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that T 4 can be expressed as a linear combination of the temperature. Expanding T 4 in
Taylor series about T∞ to obtain

T 4 ≈ 4T 3
∞T − 3T 4

∞. (8)

Hence,
∂qr
∂ȳ

= −16σ?T 3
∞

3α?
∂T 2

∂y2
(9)

Introducing the stream function
ψ(x, y) as u = ∂ψ

∂y
, v = −∂ψ

∂x
, equation (1) is automatically satisfied.

The following dimensionless variables are substituted into Eqs. (2-6)

ψ(x, y) = xf(η)(aν)1/2, η =
(a
ν

)1/2
, N = xg(η)

√
a3

ν

θ(η) =
k (T − T∞)

A

(a
ν

)1/2
, φ(η) =

Dm (C − C∞)

B

(a
ν

)1/2
.

(10)

. The resulting non-linear ODEs are:

(1 +K) f ′′′ + ff ′′ + λ2 +Kg′ − (Da+M) f ′ − (Fs+ 1) f ′2 = 0, (11)

λg′′ + fg′ − f ′g − 2Hg −Hf ′′ = 0, (12)(
1 +

4

3
R

)
θ′′ + PrEc (1 +K) f ′′2 + Prfθ′ + PrQθ + PrDuφ′′ = 0, (13)

φ′′ + Scfφ′ + ScSrθ′′ − Scγ1φ = 0, (14)

subject to boundary conditions:

η = 0 : f ′ = 1, f = fw, g = −mf ′′, θ′ = −1, φ′ = −1, (15)

η −→∞ : f ′ = λ, g −→ 0, θ −→ 0, φ −→ 0. (16)

Here, prime denotes differentiation with respect to η, K = κ
µ

is the material parameter,
fw = − vw√

aν
with fw > 0 as the suction and fw < 0 corresponds to injection. Da = ν

aKp

is the Darcy parameter, M = σB2
o

aρ
is the Magnetic parameter, Pr = µCp

k
is the Prandtl

number, Sc = ν
Dm

is the Schmidt number, Q = q
aρCp

is the heat generation/absorption

parameter, Fs = F0

Kp
is the Forchheimer number, Gr = gβ0

√
ν
a5

is the thermal Grashof

number, Gc = gβ?0
√

ν
a5

is the solutal Grashof number, λ = γ
νρj

is the spin gradient vis-

cosity parameter, H = κ
aρj

is the vortex viscosity parameter, Ec = u3k
AxCp

√
aν

is the Eckert

number, R = 4σ?T 3
∞

α?k∞
is the radiation parameter, Du = BKT

νCsCp
k
A

is the Dufour number,

Sr = DmKT

BTm
B
k

is the Soret number and γ1 = kr
a

is the chemical reaction parameter.
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Quantities of physical interest

The shear stress at the surface is given as τw =
[
(µ+ κ)

(
∂u
∂y

)
+ κN

]
y=o

.

The skin friction coefficient is defined as Cf = τw
ρu2w

= [1+K(1−m)]f ′′(0)√
Rew

where uw = ax is the characteristics velocity and Rew = uwx
ν

is the local Reynolds num-
ber.
The wall couple stress is defined as Mw =

(
γ ∂N
∂y

)
y=0

= µuw
(
1 + K

2

)
g′(0)

The local Nusselt number and the Sherwood number are respectively given as

Nux =
xA

k (Tw − T∞)
, (17)

Shx =
xB

k (Cw − C∞)
, (18)

where A and B are respectively given as A = −k
[
∂T
∂y

]
y=0

, B = −Dm
[
∂C
∂y

]
y=0

, using

(10) in (17) and (18) gives Re
−1/2
x Nux = 1

θ(0)
and Re

−1/2
x Shx = 1

φ(0)

3. Method of solution
The system of non-linear ordinary differential equations (11 − 14) with the boundary
conditions (15−16) were solved numerically using Fourth order Runge-Kutta integration
scheme alongside shooting method. Systematic estimate of f ′′(0) and θ(0) were carried
out with shooting technique until the boundary conditions at infinity decay exponentially
to zero. The iteration process is repeated until the convergence criterion for all the vari-
ables at 10−8 is achieved. The step size ∇η = 0.001 is used for the numerical solution
and the boundary condition η −→∞ is approximated by ηmax = 10.
4. Results and Discussion
To have a clear insight into the behaviour of each of the flow parameters on the physical
problem, the computational analysis are carried out for the dimensionless velocity, tem-
perature, concentration and microrotation. The default values of the computation are as
follows: M = 0.5, K = 0.5, Ec = 0.01, Pr = 0.71, Sc = 0.22, R = 0.2, λ = 2, Da = 0.5,
Fs = 0.5, Q = 0.5, m = 0.5, and fw = 0.5, Sr = 1, Du = 0.2, Gr = 4, Gc = 2. The
plotted graphs correspond to these values unless otherwise indicated on the graph.
To authenticate our numerical analysis, a comparison of the values of the surface tem-
perature θ(0) for various values of Prandtl number Pr has been made with existing work
in literature under some limiting cases and found to be in excellent agreement as shown
in Table 1.

Table 1: Comparison of the values of surface temperature θ(0) with existing works for
different values of Pr when

K = M = R = Da = Fs = Ec = Q = Sc = Du = Sr = γ1 = H = 0
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Pr Salleh et al. (2010) Qasim et al. (2013) Present results
0.72 - 2.15916 2.15707
1.00 1.71816 1.71816 1.71818
3.00 0.85819 0.85819 0.85819
5.00 0.63773 0.63773 0.63773
7.00 0.52759 0.52758 0.52759
10.00 0.43327 0.43327 0.43328
100.00 0.12877 0.12877 0.12877

Table 2 shows the numerical values of skin friction coefficient, Nusselt number, Sherwood
number and the wall couple stress for some pertinent parameters. From this table, it is
seen that the material parameter K, the Magnetic parameter M and Forchheimer pa-
rameter Fs cause a reduction in the skin friction coefficient, Nusselt number, Sherwood
number and the wall couple stress. On the other hand, the skin friction coefficient, wall
couple stress and the sherwood number increases with heat generation parameter Q and
Dufour parameter Du.

Table 2: Values of f ′′(0), 1
θ(0)

, 1
φ(0)

and g′(0) for variations in K, M , Fs, Q, fw, Du
and γ1

K M Fs Q fw Du γ1 f ′′(0) 1/θ(0) 1/φ(0) g′(0)
0.00 1.602837 0.539383 1.071818 1.088777
0.75 0.5 0.5 0.5 0.2 0.5 0.2 1.148439 0.537536 1.069651 0.987890
2.00 0.900419 0.532433 1.064202 0.781472
0.5 0.00 1.767453 0.554924 1.084236 1.198142

1.50 1.310287 0.510971 1.050286 0.895471
3.5 0.832752 0.462838 1.017619 0.591926
0.5 0.5 2.309064 0.414462 1.095415 1.395224

1.5 1.973539 0.386096 1.081265 1.181854
2.5 1.711728 0.363254 1.072580 1.020244

0.1 1.089493 0.681017 0.975858 0.754021
0.35 1.382569 0.592628 1.029425 0.942556
0.75 2.062246 0.452645 1.167758 1.399672
0.5 -0.5 3.083214 0.315423 1.177637 1.692487

-0.2 2.609241 0.371884 1.114698 1.514225
0.2 2.019750 0.461203 1.080304 1.274631
0.2 0.2 1.602837 0.539384 1.0718180 1.087776

1.0 2.520743 0.377711 1.2952781 1.720463
0.5 0.5 1.602837 0.538394 1.0718182 1.087776

1.0 1.568575 0.535830 1.0718185 1.065148

Figs. 2-3 respectively describe the impact of magnetic field parameter M on the veloc-
ity and temperature profiles. Observation from Fig. 2 reveals that the fluid velocity
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and the velocity boundary layer thickness decrease with an increase in the value of the
magnetic field parameter M . This physical response shows that the application of the
transverse magnetic field in an electrically conducting fluid creates a retarding force known
as Lorentz force which acts against the fluid motion and slows it down. In consequence,
the micropolar fluid temperature increases as shown in Fig. 3. Fig. 4 shows the variation
of the dimensionless velocity with η for various values of material (micropolar) parame-
ter K. It is noticed that the velocity profiles decrease very close to the plate with the
velocity of viscous fluid K = 0 higher than that of micropolar fluid. However, further
away from the plate the fluid velocity increases with an increase in K due to the rising
in the momentum boundary layer thickness. In such case, the micropolar fluid velocity
is higher than that of viscous fluid (K = 0). Fig. 5 shows that the microrotation profiles
rises near the plate and it is negative. The negative values of the microrotation indicate
a reverse spinning of the micro-particles.

Fig. 2. Effect of M on Velocity profiles Fig. 3. Effect of M on Temperature

Fig. 4. Effect of K on Velocity Fig. 5. Effect of K on Microrotation profiles
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Figs. 6-7 describe the influence of Forchheimer Fs on velocity and temperature profiles.
As Forchheimer Fs increases, the velocity distribution in the boundary layers decreases
due to the tightness of the porous medium, also the hydrodynamic boundary layer thick-
ness decreases as shown in Fig.7, a similar effect happens in the case of the Darcy pa-
rameter Da. The resistance to the fluid motion created by the porous medium causes
the fluid to heat up leading to a rise in thermal boundary layer thickness and as a result
the temperature rises as depicted in Fig. 7. Fig. 8 displays the effect of the radiation
parameter R on the temperature distributions. Observation shows that an increase in
R has the tendency to enhance the conduction effect and increase temperature at every
point away from the surface, in terms of the boundary layer, the thickness of the ther-
mal boundary layer rises as R increases. Hence, to have the cooling at a faster rate R
should be reduced. Fig. 9. is a plot of temperature against η for different values of heat
generation parameter Q. Heat generation enhances temperature distribution across the
boundary layer.

Fig. 6. Effect of Fs on Velocity profiles Fig. 7. Effect of Fs on Temperature profiles
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Fig. 8. Effect of R on Temperature Fig. 9. Effect of R on Temperature profiles

Figs.10-11 display the influence of suction/injection fw on velocity and temperature
distributions across the boundary layer. Observation shows that both the hydrodynamic
and thermal boundary layers fall with an increase in the suction velocity (fw > 0). In
addition, suction produces a damping effect on the fluid flow due to the fact that the
heated fluid is being pushed towards the plate such that the buoyancy force acted to
resist the fluid as a result of high influence of viscosity. On the other hand, an increase
in the injection parameter fw < 0 enhances velocity distribution within the boundary
layer.
Fig. 12 depicts a decrease in the microrotation profiles and a negative rotation of the
micro-particles with an increase in the spin gradient viscosity parameter λ. However,
when the surface boundary parameter m = 0 a case of strong concentration of micro-
elements, the microrotation decreases near the plate while it increases further away from
the plate and with positive spinning of micro-constituents as demonstrated in Fig. 13.
Fig. 14 shows the influence of vortex viscosity parameter H on the microrotation profiles.
There is a rise in the microrotation profiles and a negative rotation of the micro-particles
with an increase in the vortex viscosity parameter H. Fig. 15 illustrates the effect of
Prandtl number Pr on the temperature profiles. It is evident that increase in the Prandtl
number Pr causes a reduction in the temperature profile. An increase in Pr implies
reducing thermal boundary layer thickness which in turn lowers the average temperature
within the boundary layer. Prandtl parameter Pr can therefore be applied to enhance
the rate of cooling as fluids with lower Pr produce higher conductivities and at such heat
diffuses speedily away from the heated plate than for higher values of Pr.

Fig. 10. Effect of fw on Velocity profiles Fig. 11 Effect of fw on Temperature
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Fig. 12. Effect of λ on Microrotation Fig. 13. Effect of λ on Microrotation
profiles @ m=0

Fig. 14. Effect of H on Microrotation Fig. 15.Effect of Pr on Temperature

Conclusion
This paper considers the free convective boundary layer flow, heat and mass transfer of
an electrically conducting micropolar fluid past a linearly stretching sheet in a saturated
Darcy-Forchheimer porous medium with constant heat and mass flux. The governing
partial differential equations of the fluid flow are transformed into non-linear coupled
ordinary differential equations using an appropriate similarity variables and the result-
ing equations are solved with the fourth order Runge-Kutta integration scheme coupled
shooting method. Comparison of the present results are made with existing work in the
literature under some limiting cases and found to be in excellent agreement.
The main observations are:

• An increase in the material (micropolar) parameter K causes a reduction in the
skin friction coefficient f ′′(0), heat transfer θ′(0), mass transfer φ′(0) and the wall
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couple stress g′(0). Thus, the inclusion of micropolar fluid is to reduce the drag
along the plate.

• The material (micropolar) parameter K causes a decrease in the fluid velocity close
to the plate but increase in fluid velocity further away from the plate, also, an
increase in K causes a rise in the microrotation profiles. .

• The heat transfer coefficient increases with increase in suction parameter fw as the
skin friction coefficient rises with the Dufour effect.

• The species concentration reduces with an increase in the destructive chemical re-
action parameter γ1 > 0 parameter, Soret Sr and Schmidt numbers Sc while the
trend is reversed for the generative chemical reaction γ1 < 0 parameter.

• The momentum boundary layer thickness reduces with an increase in the Darcy Da
and Forchheimer Fs parameters while the opposite is the case for thermal boundary
layer thickness. The thermal boundary layer thickness diminishes with an increase
in the Prandtl number Pr, while the opposite trend is observed with an increase in
the radiation parameter R and heat generation parameter Q.
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