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Abstract
This study presents the problem of a steady, two-dimensional, heat and mass transfer of an in-
compressible, electrically conducting micropolar fluid flow past a stretching surface with velocity
and thermal slip conditions. Also, the influences of temperature dependent viscosity, thermal
radiation and non-uniform heat generation/absorption and chemical reaction of a general or-
der are examined on the fluid flow. The governing system of partial differential equations of
the fluid flow are transformed into non-linear ordinary differential equations by an appropriate
similarity variables and the resulting equations are solved by shooting method coupled with
fourth order Runge-Kutta integration scheme. The effects of the controlling parameters on the
velocity, temperature, microrotation and concentration profiles as well as on the skin friction,
Nusselt number, Sherwood and wall couple stress are investigated through tables and graphs.
Comparison of the present results with the existing results in the literature in some limiting
cases shows an excellent agreement.
Keywords: Micropolar fluid; Magnetohydrodynamics; slip conditions; stretching sheet

1 Introduction

In the recent years, the study of non-Newtonian fluids has attracted considerable attention
from researchers due to its increasing usefulness and practical relevance in many industrial pro-
cesses. These fluids are particularly important in real industrial applications, such as in polymer
engineering, crude oil extraction, food processing etc. It has been observed that the Navier-
Stokes equations of classical hydrodynamic can not adequately describe the complex rheological
behaviour that fluids of industrial significance exhibit at micro and nano scales. These have
led to the development of various microcontinuum theories such as simple microfluids, simple
deformable directed fluids, polar fluids, anisotropic fluids and micropolar fluids depending on
different physical characteristics. However, as a result of diverse fluid characteristics in nature,
all the non-Newtonian fluids cannot be captured by a single constitutive model, hence, differ-
ent models of non-Newtonian fluids have been formulated such as Casson fluid, Jeffery fluid,
Maxwell fluid, Ostwald de-Waele power law fluid and Micropolar fluids (Chen et al. [1]).
Holt and Fabula [2], Vogel and Patterson [3] in their experiments on fluids with small amount
of polymeric additives discovered that these fluids manifest a reduction in skin friction near a
rigid body. In consequence, Eringen [4-5] formulated the theory of micropolar fluids and as well
derived the constitutive equations for the theory of thermo-micropolar fluids. Micropolar fluids
are important branch of non-Newtonian fluids dynamics with microstructure and constitute
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a substantial generalization of the Navier-Stokes model. By this theory, each element of the
fluid is associated to two sets of degrees of freedom: translatory degrees of freedom, giving rise
to velocity, and rotation/stretch, allowing the particles to undergo independent intrinsic spins
and homogenous deformation (Eringen [5]). These fluids provides a mathematical model for
investigating many complicated and complex fluids motion such as suspension solution, blood
rheology and colloidal fluids. The presence of micropolar fluids can be found in polymeric fluids,
fluid suspensions, animal blood, liquid crystals, colloidal fluids, clouds with dust etc. (Ahmadi
[6]; Hayat et al. [7]). Its applications in a number of industrial processes, such as extrusion of
polymer, the flow of exotic lubricants, colloidal suspensions and the cooling of metallic plate in
water bath have also boosted the interest of researchers in studying it (Rahman [8]). A detailed
review, on the theory and applications of micropolar fluids, was given by Lukaszewicz [9].
The study of flow and heat transfer induced by stretching surfaces plays a vital role in indus-
trial and engineering processes. For instance, the aerodynamic extrusion of plastic sheets, wire
drawing, glass fiber production, paper production and hot rolling. The pioneering work on the
steady, boundary layer flow of an incompressible viscous fluid induced by linearly stretching
sheet was carried out by Crane [10]. Gupta and Gupta [11] extended the work to include heat
and mass transfer on stretching sheet with suction or blowing.
The inclusion of the magnetic field on the study of flow and heat transfer past stretching plates
has practical applications in engineering activities, for instance, hot rolling, the extrusion of
polymer sheet from a die and the cooling of metallic sheets. In order to achieve top-grade
property of the final product during the fabrication processes, the rate of heating and cooling
can be controlled by the use of electrically conducting fluid and the application of magnetic
field (Mukhopadhyay [12]). To this end, Eldabe et al. [13] studied MHD flow of a micropolar
fluid past a stretching sheet with heat transfer. Elbashbeshy and Bazid [14] examined heat
transfer over a stretching sheet embedded in a porous medium. Kumar [15] numerically studied
the problem of heat and mass transfer in a hydromagnetic flow of a micropolar fluid past a
stretching sheet using the Finite element technique. The author reported that the fluid velocity
increased with a rise in the material parameter, microrotation and temperature also rise with an
increase in the magnetic field parameter while the velocity falls with an increase in the magnetic
field parameter.
The study of heat and mass transfer analysis with chemical reaction, heat generation/absorption
in the boundary layer flow is of practical importance due their importance in chemical processes
and hydrometallurgical industries, for instance, food processing, manufacturing of ceramics and
polymer production (Das[16]; Mishra et al. [17]). Also, heat generation/absorption influence
may change the temperature distribution of the fluid flow and in consequence affect various
engineering devices. To this end, Bhattacharyya and Layek [18] studied MHD boundary layer
flow with diffusion and chemical reaction over a porous flat plate with suction/blowing. Mo-
hammed and Abo-Dahab [19] examined heat and mass transfer in MHD micropolar flow over a
vertical moving porous plate in a porous medium with heat generation using perturbation tech-
nique. The authors reported that the translational velocity across the boundary layer and the
magnitude of microrotation at the wall are decreased with an increase in the values of magnetic
and Prandtl parameters while the trend was reversed with an increase in the values of thermal
radiation. Other researchers who have studied boundary layer flow with heat sources include
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(Olajuwon et al. [20]; Pal and Chatterjee [21]).
Many researchers assumed constant fluid properties, however, physical properties of fluid may
change largely with temperature, especially fluid viscosity. The increase in temperature en-
hances the transport phenomena by decreasing the viscosity across the momentum boundary
layer such that the rate of heat transfer at wall is affected, similarly, a decrease in fluid viscosity
can make the fluid velocity decrease appreciably with an increase in transverse distance from a
stretching plate. Thus, to accurately predict the flow behaviour, adequate attention should paid
to the variation of viscosity with temperature. Pal and Mondal [22] investigated the influence of
temperature-dependent viscosity and variable thermal conductivity on Newtonian fluid. Bhat-
tacharyya et al. [23] investigated boundary layer slip flow and heat transfer past a stretching
sheet with temperature dependent viscosity.
The influence of thermal radiation heat transfer is significant on various flow because many en-
gineering processes happen at high temperature, and the knowledge on radiation heat transfer
becomes useful for the design of pertinent equipment, nuclear power plants, various propulsion
devices, space technology and high temperature processes such as polymer processing industry
where the quality of the end product depends to some extent on the heat controlling factors.
The above researchers have limited their investigations to flow and heat transfer problems of
Newtonian/non-Newtonian fluids under the assumption of no-slip boundary condition ( i.e. the
assumption that the fluid adheres to the boundary surface). However, in some practical situa-
tions, this assumption does not hold and it may be necessary to replace the no-slip boundary
condition with the partial slip boundary condition for some practical flow problems. The non-
adherence of fluid to a solid boundary is known as velocity slip. The slip and temperature jump
boundary conditions represent a discontinuity in the transport variable across the interface and
describes more accurately the non-equilibrium region near the surface. Slip flow problems are
very essential on both the stationary and moving boundary as there are various Newtonian
and non-Newtonian fluids such as particulate fluids e.g. emulsions, suspensions and polymer
solutions in which there may be a slip between the fluid and the boundary (wang [24]). The
applications of such study in technology can be found in the polishing of artificial heart valves
and internal cavities (Mukhopadhyay [25]). To this end, Anderson [26] examined the slip-flow of
a Newtonian fluid over a linearly stretching sheet. Das [16] investigated slip effects on heat and
mass transfer in MHD micropolar fluid flow over an inclined plate with thermal radiation and
chemical reaction. Devi et al. [27] examined radiation effect on MHD slip flow past a stretching
sheet with variable viscosity and heat source/sink. Kemparaju et al. [28] investigated heat
transfer in MHD Newtonian fluid flow over a stretching sheet with velocity and thermal slip
conditions.
The aim of this study is to examine the influence of both the velocity and thermal slip on heat
and mass transfer in MHD micropolar fluid flow over a stretching sheet under the influence
of variable fluid viscosity, thermal radiation, non-uniform heat source/sink and homogeneous
chemical reaction of a general order. The nonlinear partial differential equations governing the
flow are transform into nonlinear ordinary differential equations by an appropriate similarity
transformations variables while the resulting equations are solved by applying the fourth order
Runge-Kutta integration scheme.
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2 Problem Formulation

Consider a laminar, boundary layer slip flow of a viscous, incompressible, MHD micropolar fluid
past a flat stretching sheet. The cartesian coordinate system is (x̄, ȳ, z̄) and the corresponding
velocity components are (ū, v̄, 0). The x-axis is directed towards the continuous stretching sheet
along the flow while the y-axis is normal to it. The stretching velocity is assumed to be ūw = ax̄
while the velocity upstream is assumed to be zero, the temperature and concentration of the
sheet are Tw and Cw respectively. The flow is confined to the region y > 0. A transverse
magnetic field B = (0, Bo, 0) of strength Bo is applied normal to the flow direction as displayed
in Fig. 1. Also, the angular velocity ω = (ω1, ω2, ω3) = (0, 0, N(x̄, ȳ)) is assumed. The
radiative heat flux term in x̄ direction is considered negligible as compared to that in the ȳ
direction. It is assumed also that the magnetic Reynolds number is sufficiently small such that
the induced magnetic field is negligible as compared to the applied magnetic field.

Fig. 1. Geometry of the flow.

Under the stated assumptions and the boundary layer approximations, the governing boundary
layer continuity, momentum, microrotation and energy are respectively given as:
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∂ȳ
= 0, (1)

ū
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The associated boundary conditions for Eqs. 1, 2, 3, 4 and 5 are:

ȳ = 0 : ū = uw + λ
∂ū

∂ȳ
, v̄ = 0, T̄ = Tw +A

∂T

∂ȳ
, C̄ = Cw, N̄ = −m∂ū

∂ȳ

ȳ −→∞ : ū −→ 0, N̄ −→ 0, T̄ −→∞, C̄ −→∞,
(6)
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Where ū and v̄ are the velocity components in x̄ and ȳ directions respectively. Also, ρ, κ, T̄ , C̄,
N̄ , Bo, σ, Cp, qr, q

′′′, kr and n are the fluid density, vortex viscosity, fluid temperature, fluid con-
centration, component of microrotation, magnetic field intensity, electrical conductivity, specific
heat at constant pressure, radiative heat flux, non-uniform heat source/sink, chemical reaction
rate, and order of chemical reaction. Also, λ is the velocity slip, A is the thermal slip and m is
a surface boundary parameter with 0 ≤ m ≤ 1. The case when m = 0 corresponds to N = 0,
this represents no-spin condition i.e. strong concentration such that the micro-particles close to
the wall are unable to rotate. The case m = 1

2 , indicates weak concentration of micro-particles
and the vanishing of anti-symmetric part of the stress tensor and the case n = 1 represents
turbulent boundary layer flows (see Peddieson [29]; Ahmadi, [6]; Jena and Mathur [30]).
γ =

(
µ+ κ

2

)
j, is the spin gradient viscosity which denotes the relationship between the coef-

ficients of viscosity (µ) and micro-inertia (j). This assumption has been invoked to allow the
field of Eqs.(1-5) to predict the correct behaviour in the limiting case when the microstructure
effects becomes negligible and the total spin N reduces to the angular velocity (Ahmadi [6]).
All the material constants µ, κ, γ, j are non-negative.
Using Rosseland approximation,

qr = −4σ?

3α?
∂T 4

∂ȳ
(7)

is the radiative heat flux (Adeniyan [31]; Akinbobola and Okoya [32]).
Assuming that there exists sufficiently small temperature difference within the flow such that
T 4 can be expressed as a linear combination of the temperature. Expanding T 4 in Taylor series
about T∞ to get

T 4 = T 4
∞ + 4T 3

∞ (T − T∞) + 6T 2
∞ (T − T∞)2 + ..., (8)

neglecting higher order terms in Eq. (8) gives

T 4 = 4T 3
∞T − 3T 4

∞, (9)

hence
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∂ȳ

= −16σ?T 3
∞

3α?
∂T 2

∂ȳ2
. (10)

The viscosity temperature dependence is assumed to decrease with the absolute temperature in
the following form:

µ(T̄ ) =
µ0[

1 + β?
(
T̄ − T∞

)] = µ0

[
1− β?

(
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)
+ β2?

(
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)2
+ . . .

]
≈ µ0

[
1− β?

(
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)] (11)

This dependency is in agreement with Batchelor [33], herein µ0 = ρν0 is the fluid viscosity at
reference temperature, ν0 is reference kinematic viscosity; and the coefficient β? with inverse
temperature dimension determines the strength of the dependency between µ and T̄ .
The non-uniform heat source/sink is given Das [16] as

q′′′ =
kuw
ν0x̄

[
Q (Tw − T∞) e−η +B (T − T∞)

]
, (12)
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where Q and B are coefficients of space and temperature dependent heat source/sink respec-
tively. The case Q > 0 and B > 0 corresponds to internal heat generation while Q < 0 and
B < 0 corresponds to internal heat absorption.
The following similarity transformations are also introduced.

η =

(
a

ν0

) 1
2

y, ψ = (aν0)
1
2 x̄f(η), N̄ =

(
a

ν0

) 1
2

ax̄g(η), (13)

where ψ is the stream function defined as u = ∂ψ
∂y , v = −∂ψ

∂x which identically satisfies Eq. (1).
Hence

ū = ax̄f ′(η), v̄ = − (aν0)
1
2 f(η). (14)

The dimensionless temperature and concentration are given as

θ =
T̄ − T∞
Tw − T∞

, φ =
C̄ − C∞
Cw − C∞

(15)

Substituting Eqs. (13-14) in Eqs. (2-6) and using Eqs. (10-12) to obtain

(1 + ξθ) (1 + (1 + ξθ)K) f ′′′ + ff ′′ − ξθ′f ′′ + (1 + ξθ)2
(
ff ′′ − f ′2 +Kg′

)
− (1 + ξθ) (M (1 + ξθ)) f ′ = 0

(16)

(1 +K/2) g′′ + fg′ − f ′g −H
(
2g + f ′′

)
= 0 (17)

(1 +Nr) θ′′ + Prfθ′ +
(
Qe−η +Bθ

)
= 0 (18)

φ′′ + Scfφ′ − Scζφn = 0 (19)

subject to boundary conditions:

η = 0 : f ′ = 1 + αf ′′, f = 0, g = −mf ′′, θ = 1 + βθ′, φ = 1

η −→∞ : f ′ = 0, g −→ 0, θ −→ 0, φ −→ 0
(20)

Here, prime denotes differentiation with respect to η, ξ = β? (Tw − T∞) is the variable viscosity
parameter, K = κ

µ0
is the material parameter, α = λ

√
a
ν is the velocity slip parameter, β = A

√
a
ν

is the thermal slip parameter, Pr =
µ0Cp

k is the Prandtl number, Nr = 16σ?T 3
∞

3α?k is the radiation

parameter, M =
σB2

0
aρ is the magnetic field parameter, H = κ

aρj is the vortex viscosity parameter,

Sc = Dm
ν is the Schmidt number and ζ = kr(Cw−C∞)n−1

a is reaction rate parameter.
Physical quantities of Engineering interest
The physical quantities of engineering interest are in this study are: the non-dimensional skin
friction, rate of heat transfer and the wall couple stress. These are respectively defined as:

Cf =
τw
ρu2w

, Nu =
xqw

k (Tw − T∞)
, Sh =

xqm
Dm (Cw − C∞)

Cs =
xMw

µja
, (21)
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where

τw =

[
(µ+ κ)

∂u

∂y
+ κN

]
y=0

, qw = −k
(
∂T̄

∂y

)
y=0

, qm = −Dm
(
∂C̄

∂ȳ

)
y=0

, Mw =

[
γ
∂N

∂y

]
y=0

,

(22)
are the wall shear stress, the heat flux, mass flux and the wall couple stress respectively.
In dimensionless form the skin friction, Nusselt number, Sherwood number and wall couple
stress correspondingly become

(Rex)
1
2Cf =

1

1 + ξ
(1 +K/2) f ′′(0), (Rex)−

1
2Nux = −θ′(0)

(Rex)−
1
2Shx = −φ′(0), (Rex)−

1
2 , RexCs = (1 +K/2) g′(0),

(23)

where Rex = uwx
ν is the local Reynolds number

3 Method of Solution

The coupled nonlinear differential equations (16-19) together with the boundary conditions
(20) is constitutes a boundary value problem (BVP) which are solved using shooting method
alongside fourth order Runge-Kutta method. The higher order nonlinear equations (16-19) of
third order in f , and second order in g, θ and φ are reduced into a system of nine simultaneous
equations of first order for nine unknowns. To solve this system, nine initial conditions are
needed while only five initial conditions are available. Thus, there are still four initial conditions
that are needed which are not given in the problem, these are: f ′′(0), g′(0), θ′(0) and φ′(0).
However, the values of f ′, g, θ and φ are known as η −→ ∞. These four end conditions are
used to produce the four unknown initial conditions (p1, p2, p3, p4) at η = 0 by applying the
shooting technique. To estimate the value of η∞ we start with some initial guess value and
solve the BVP equations (16-19) to get f ′′(0), g′(0), θ′(0) and φ′(0). The procedure is repeated
until two successive values of f ′′(0), g′′(0), θ′(0) φ′(0) differ only after desired significant digit
signifying the limit of the boundary along η. The last value of η is chosen as appropriate for a
particular set of governing parameters for the determination of the dimensionless velocity f ′(η),
microrotation g(η), temperature θ(η) and concentration φ(η) across the boundary layer. The
higher order equations are reduced to a system of first order differential equations by letting:

f1 = f, f2 = f ′, f3 = f ′′, f4 = g, f5 = g′, f6 = θ, f7 = θ′, f8 = φ, f9 = φ′ (24)

f ′3 =
ξf7f3 − f1f3 − (1 + ξf6)

2 (f1f3 − f22 +Kf5
)

+ (1 + ξf6) (M (1 + ξf6)) f2

(1 + ξf6) (1 + (1 + ξf6)K)
, (25)

f ′5 =
f2f4 +H (2f4 + f3)− f1f5

(1 +K/2)
, (26)

f ′7 =
Prf1f7 − (Qe−η +Bf6)

(1 +Nr)
, (27)
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f ′9 = Scζfn8 − Scf1f9. (28)

The boundary conditions now become

f1(0) = 0, f2(0) = 1 + αf3(0), f3(0) = p1, f4(0) = −nf3(0), f5(0) = p2, f6(0) = 1 + βf7(0)

f7(0) = p3, f8(0) = 1, f9(0) = p4, f2(∞) −→ 0, f4(∞) −→ 0, f6(∞) −→ 0, f8(∞) −→ 0
(29)

Thereafter, after gotten all the initial conditions, fourth-order Runge-Kutta integration scheme
with step size ∇η = 0.05 is applied and the solution is obtained with a tolerance limit of 10−7.
The computations are carried out by a program coded in a symbolic language Maple 18. From
the numerical computation, the skin friction coefficient f ′′(0), the Nusselt number −θ′(0), the
wall couple stress g′(0) and the Sherwood number φ′(0) are sorted out and presented in Table
3.

Table 1: Comparison of the local Nusselt number −θ′(0) for various values of Pr with
M = K = A = B = ξ = Sc = R = α = β = 0.

Pr Grubka & Bobba [34] Chen [35] Seddek & Salem [36] Present Results

0.72 0.4631 0.46315 0.46314 0.463157
1.00 0.5820 0.58199 0.58197 0.581977
3.00 1.1652 1.16523 1.16524 1.165246
7.00 - 1.89537 1.89540 1.895403
10.00 2.3080 2.30797 2.30800 2.308004
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Table 2: Comparison of the skin friction coefficient −f ′′(0) for various values of α when
M = K = A = B = ξ = Sc = R = β = 0.

α Anderson [26] Bhattacharyya et al. [23] Nandeppanavar et al. [37] Present Results

0.1 0.8721 0.872083 0.872080 0.872083
0.2 0.7764 0.776377 0.776380 0.776377
0.5 0.5912 0.591195 0,591200 0.591196
5.0 0.1448 0.144840 0.144840 0.144842
10.0 0.0812 0.081242 0.081240 0.081245
20.0 0.0438 0.043789 0.043790 0.043792
50.0 0.0186 0.018597 0.018600 0.018600

Table 3: Values of skin friction coefficient, Nusselt number, wall couple stress and Sherwood
number for variation in K,M,α, β, ξ, n and ζ.

K M α β ξ n ζ −f ′′(0) −θ′(0) −g′(0) −φ′(0)

0.0 0.5 0.3 1.0 0.5 2.0 0.5 0.942679 0.248165 0.426310 0.548686
1.0 0.5 0.3 1.0 0.5 2.0 0.5 0.771714 0.288348 0.286937 0.574186
2.5 0.5 0.3 1.0 0.5 2.0 0.5 0.642858 0.318552 0.197571 0.599941
1.0 0.5 0.3 1.0 0.5 2.0 0.5 0.728596 0.300300 0.271118 0.583413
1.0 0.75 0.3 1.0 0.5 2.0 0.5 0.819484 0.274335 0.304522 0.564700
1.0 1.2 0.3 1.0 0.5 2.0 0.5 0.893051 0.251233 0.331703 0.551605
1.0 0.5 0.0 1.0 0.5 2.0 0.5 1.089992 0.325681 0.453464 0.609351
1.0 0.5 0.7 1.0 0.5 2.0 0.5 0.773435 0.228877 0.287144 0.573414
1.0 0.5 1.2 1.0 0.5 2.0 0.5 0.567015 0.197786 0.191007 0.547994
1.0 0.5 0.3 0.0 0.5 2.0 0.5 0.787782 0.399718 0.293049 0.571112
1.0 0.5 0.3 1.0 0.5 2.0 0.5 0.773435 0.228877 0.287143 0.573414
1.0 0.5 0.3 2.0 0.5 2.0 0.5 0.764817 0.187235 0.283884 0.575107
1.0 0.5 0.3 1.0 0.0 2.0 0.5 0.265482 0.301152 0.265482 0.584242
1.0 0.5 0.3 1.0 0.3 2.0 0.5 0.279788 0.234221 0.279788 0.577214
1.0 0.5 0.3 1.0 1.0 2.0 0.5 0.300690 0.217631 0.300690 0.566062
1.0 0.5 0.3 1.0 0.5 1.0 0.5 0.771714 0.288348 0.286937 0.677426
1.0 0.5 0.3 1.0 0.5 2.0 0.5 0.771714 0.288348 0.286937 0.574186
1.0 0.5 0.3 1.0 0.5 3.0 0.5 0.771714 0.288348 0.286937 0.519564
1.0 0.5 0.3 1.0 0.5 0.5 0.0 0.771714 0.288348 0.286937 0.338616
1.0 0.5 0.3 1.0 0.5 0.5 0.5 0.771714 0.288348 0.286937 0.574186

4 Results and Discussion

To have clear insight into the behaviour of the fluid flow, a computational analysis has been
carried out for the dimensionless velocity, temperature, concentration and microrotation pro-
files across the boundary layer. The default values adopted for computation in this study are:
K = β = 1, α = 0.3 R = 0.1, Q = 0.01, B = 0.02, ζ = M = ξ = 0.5, Sc = 0.62, n = 2 and
Pr = 1.0. The graphs correspond to these values unless otherwise indicated on the graph.
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Table 1 shows the comparison of the values of the local Nusselt number −θ(0) with the exist-
ing works of Grubka and Bobba [34], Chen [35], Seddeek and Salem [36]under some limiting
cases for various values of Prandtl number Pr. The comparison shows an excellent agreement.
Similarly, Table 2 shows the values of the the skin friction coefficient under some limiting cases
as compared with the existing works of Anderson [26], Bhattacharyya et al. [23] and Nandep-
panavar et al. [37] for various values of the velocity slip parameter α. The comparison also
shows an excellent agreement.
Table 3 depicts the values of the skin friction coefficient, the rate of heat transfer (Nusselt
number), the wall couple stress and the mass transfer (Sherwood number) for some selected
parameters. From this table, the skin friction coefficient f ′′(0) decreases with an increase in
K,α and β while it increases with M and ξ. The local Nusselt number −θ′(0) decreases for
M,α, β and ξ but increases for a rise in K. An increase in K,α, β and ξ reduces the wall couple
stress while a rise in parameter M enhances it. The mass transfer rate increases with a rise in
K while it falls with a rise in α.
Figures 2-5 exhibit the effects of the velocity slip parameter α on the the velocity, temperature,
concentration and microrotation profiles across the boundary layer. There is a decrease in the
fluid velocity and the microrotation profiles as α increases as shown in Figures 2 and 5. More-
over, it is observed that the rate of transport reduces with the increasing distance (η) from the
sheet for the velocity and microrotation profiles. In the presence of slip, the stretching velocity
and the flow velocity near the sheet are unequal. Therefore, an increase in the slip parameter α
causes a rise in the slip velocity leading to a decrease in the fluid velocity as observed in Figure
2. The temperature and concentration profiles are enhanced with an increase in the velocity
slip parameter α as seen in Figures 3 and 4. In addition, an increase in α causes the thickening
of the thermal and the solutal boundary layer thicknesses.
The influence of the thermal slip parameter β on the temperature profiles is illustrated in Fig-
ure 6. It is noticed that the temperature decreases near the sheet with an increase in β. This
response is due to the fact that as β increases, less heat is transferred from the sheet to the fluid
leading to a drop in the temperature. (see Table 3). Figure 7. shows that a rise in the magnetic
field parameter M reduces the fluid velocity. An increase in the transverse magnetic field in an
electrically conducting fluid has the tendency to increase the resistive force known as Lorentz
force and thus reduces the fluid motion and the hydrodynamic boundary layer thickness.
Figures 8-11 describe the effect of the material parameter K on the velocity, temperature, con-
centration and microrotation profiles. Evidently, there is a rise in the velocity profiles as K
increases due to the thickening of the hydrodynamic boundary layer. However, the temperature
and concentration profiles with the thermal and the solutal boundary layer thicknesses decrease
with an increase in the material parameter K as displayed in Figures 9 and 10. Moreover,
the effect of the material parameter K on the microrotation profiles is depicted in Figure 11.
Observation reveals that there is a decrease in the microrotation distribution near the sheet as
K increases, whereas as the distance (η) from the sheet increases, the profiles intersect and the
opposite trend is noticed, i.e. the microrotation profiles rise with an increase in K.
Figures 12-14 illustrate the effect of the variable viscosity parameter ξ on the velocity, temper-
ature and concentration profiles. Clearly, an increase in ξ results in reducing the fluid motion
and the thinning of the hydrodynamic boundary layer thickness as depicted in Figure 12. This
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response is due to the fact that a rise in the viscosity parameter enhances the skin friction
coefficient (see Table 3) thus lowering the fluid velocity. As an increase in the variable viscosity
parameter ξ causes a rise in the skin friction, the area of the stretching surface in contact with
the flow rises and more heat is generated leading to a rise in the surface temperature and the
thickening of the thermal boundary layer thickness as demonstrated in Figure 13. A similar
trend occurs for the concentration profiles as described in Figure 14. However, the increase is
more pronounced in the temperature profiles than that of concentration profiles. In addition, it
is noticed that as ξ increases, the skin friction coefficient rises whereas the Nusselt number and
the wall couple stress fall as seen on Table 3. This agrees well with Das [16].
Figure 15 depicts the influence of the homogeneous chemical reaction parameter ζ on the con-
centration profiles. An increase in ζ causes a decrease in the concentration of the micropolar
fluid flow along the sheet due to the thinning of the solutal boundary layer thickness. In con-
trast, an increase in the order of the chemical reaction n enhances the concentration profiles as
demonstrated in Figure 16. Also, an increase in ζ lowers the mass transfer rate while there is a
rise in the mass transfer in response to higher values of reaction order n as shown in Table 3.
The influences of the space and heat dependent heat source parameters Q > 0, B > 0 on the
temperature profiles are displayed in Figures 17 and 18. It is clear from these Figs. that the
thermal boundary layer thickness increases with an increase in the magnitude of both Q > 0 and
B > 0. This is due to the fact that energy is generated by the imposition of Q > 0 and B > 0
leading to an increase in the micropolar fluid temperature, thereby facilitating an increase in
the temperature profiles. Figure 19 describes the effect of the vortex viscosity parameter H on
the microrotation profiles. It is noticed that the microrotation profiles reduce with an increase
in H. The microrotation boundary layer thickness also decreases with an increase in the vortex
viscosity parameter H.

Figure 2. Effect of α on Velocity profiles Figure 3. Effect of α on Temp. profiles
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Figure 4. Effect of α on Concentration profiles Figure 5. Effect of α on Microrotation

Figure 6. Effect of β on Temperature profiles Figure 7. Effect of M on Velocity profiles
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Figure 8. Effect of K on Velocity profiles Figure 9. Effect of K on Temp profiles

Figure 10. Effect of K on Concentration profiles Figure 11. Effect of K on Microrotation

13



Figure 12. Effect of ξ on Velocity profiles Figure 13. Effect of ξ on Temperature

Figure 14. Effect of ξ on Concentration Figure 15. Effect of ζ on Concentration
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Figure 16. Effect of n on Concentration Figure 17. Effect of Q on Temperature

Figure 18. Effect of B on Temperature profiles Figure 19. Effect of H on Microrotation

Conclusion
This study has investigated heat and mass transfer flow in an electrically conducting micropolar
fluid over a stretching sheet with the effects of velocity and thermal slip conditions in the presence
of temperature dependent viscosity, thermal radiation, non-uniform heat generation/absorption
and chemical reaction of a general order. The governing partial differential equations of the
fluid flow have been transformed into non-linear ordinary differential equations by an appropri-
ate similarity variables and the resulting equations are solved by shooting method coupled with
fourth order Runge-Kutta integration scheme. The influences of the emerging physical param-
eters are presented through graphs and tables and comparison of the present results with the
existing results in the literature in some limiting cases shows a good agreement. The following
conclusions are drawn from this study:

• An increase in the material parameter K, velocity slip parameter α and the thermal slip
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parameter β reduces the skin friction coefficient f ′′(0) while the opposite trend is the case
with the magnetic and viscosity parameters M and ξ respectively.

• The influences of the magnetic parameter M , velocity slip α, thermal slip β and viscosity
parameters ξ is to decrease the local Nusselt number −θ′(0) whereas an increase in the
material parameter enhances both the heat and mass transfers.

• The effects of the velocity slip is to reduce the velocity and microrotation profiles while the
temperature profile is enhanced. However, the temperature profile falls with an increase
in the thermal slip parameter.

• A rise in the velocity profiles is observed as the material parameter K increases due
to the thickening of the hydrodynamic boundary layer. However, the temperature and
concentration profiles decrease with a an increase in the material parameter K.

• The microrotation distribution in the boundary layer reduces with a rise in the vortex
viscosity parameter H whereas it increases as the material parameter K rises.

• An increase in the rate of the chemical reaction causes a decrease in the species concentra-
tion of the micropolar fluid flow whereas an increase in the order of the chemical reaction
enhances the concentration profiles.
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