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Abstract 

The flow of hydromagnetic dissipative micropolar fluid passing an exponentially stretching two-

dimensional vertical sheet influenced by buoyancy force, radiation and slip effects is examined in 

this study. The dimensional modelled equations of the flow have been translated from partial into 

ordinary differential equations via similarity conversion approach while the solution to the 

transmuted equations is found using shooting technique alongside fourth order Runge-Kutta 

scheme. A strong relationship exists between the current results and the related published ones in 

literature for limiting situations. Various graphs have been sketched to discuss the impact of the 

key parameters as related to the fields of velocity, temperature and microrotation while tables are 

used to identify and explain the influences of some of the controlling parameters on the coefficient 

of the skin friction and Nusselt number for both Newtonian and non-Newtonian micropolar fluids. 

It is noticed that the growth of velocity slip lowers the fluid motion while the thermal slip behaves 

the same manner on the temperature field. 
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1. INTRODUCTION 

Micropolar fluid concept initiated and extended to thermo-micropolar fluid by Eringen [1-2] 

has offered an interesting research area for researchers and scientists in the recent years owing 

to its practical usefulness as related to science, technology and industrial operations ]3]. Each 

particle of such fluids is made of different sizes such that each has the tendency to vary in 

shapes, either to shrink, expand and  rotate separately from the rotational movement of the 

fluid [4]. This concept has been found suitable for modeling flow of various complex fluids 

such as suspension solution, animal blood, liquid crystals, polymeric fluids etc. [5]. Some areas 

of applications include: polymer engineering, drug suspension in pharmacology, sediments in 

rivers, biological fluid modeling, crude oil extraction, food processing manufacturing and 

many others. These fluids are also found applicable in diverse areas of bio-engineering 

sciences such as synovial lubrication, arterial blood flows, knee cap mechanics, cervical flows, 

pharmacodynamics etc. [6]. 

 Hydromagnetic flow in porous medium becomes important in various scientific aplications 

such as in geothermal energy extractions, ground water hydrology, MHD generators, etc. In 

view of these applications, researchers have paid more attention to such study on different 
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goemetries, boundary conditions engaging various types of fluids [7-10]. At high operating 

temperatures, the influence of thermal radiation becomes germane, this occurs due to the 

emission from the heated wall and the working fluid.  In various engineering operations, such 

as in gas turbines, astrophysical flows, power plants, etc, the understnding of thermal radiation 

becomes  crucial, for instance, in polymer extrusion works, the quality of the output during 

fabrication processes is determined to some extent on thermal controlling factors, hence, the 

desired product can be optimally achieved with the intended characteristics when there is 

accurate knowledge of radiation heat transfer [11-14]. 

The aforementioned researches were however conducted with the concept of  no-slip condition at 

the wall.  However, it has been observed that this assumption fails in some practical situations and 

in such cases, the partial slip at the wall may readily be invoked. This becomes crucial in situations 

where the flow pressure is small or the flow system is characterized by small size as well as when 

investigating particulate fluids such as emulsions and polymer solutions. This type of study is also 

applicable in biomedical engineering, science and technology as reported in [15-19]. 

The investigation of flow prompted by a stretching sheet offers a practical usefulness in numerous 

engineering and industrial operations. In particular, in metallurgical operations, including the 

cooling of continuous strips or filaments drawn through a quiescent fluid, the strips are commonly 

stretched, and in such cases, the value of the end product is determined by the rate of stretching as 

well as cooling rate. By drawing such strips in a micropolar fluid which is electrically conducting 

due to magnetic field influence ensures that the rate of cooling can be decided such that the grade 

of the desired output can be better achieved. As a pioneer on such study, Crane [20] provided a 

similarity solution in closed analytical nature on a two-dimensional sheet which streches linearly 

such that the velocity and the distance from the silt are proportional to each other. Various 

investigators have improved on such study by adding different parameters, geometries and wall 

conditions [21-23]. However, low attention has been given to the study involving nonlinear and/or 

exponential stretching of plastic sheet in literature. This kind of problem is commonly encountered 

in practical cases such as in annealing and thinning of copper wire. Hence, the need to investigate 

such problem. Exponentially stretching sheet flow and heat transfer properties of Newtonian fluids 

have been reported by various scholars  [24-28] with non-similar solution whereas Adeniyan and 

Adigun [29] provided a pure similarity solution on such  problem only with assumption of no-slip 

condition and without employing non-Newonian micropolar fluid inspite of its huge practical 

applications. 

Taking cognizance of the enormous applications of this type of study in various areas of science 

an engineering as highligted above, the current work is therefore undertaken to extend the work of 

Adeniyan and Adigun [29] by making use of non-Newtonian microplar fluid as the working fluid 

as against the Newtonian fluid engaged by those researchers and by incoporating slip condition  

effects at the boundary as against the no-slip assumption applied by [29]. The model developed in 

this study is numerically solved while the influences of some chosen parameters have been 

investigated on the skin friction coeffient and Nusselt number for the non-Newtonian micropolar 

fluid and compared with Newtonian fluid. 

 



2 Problem Formulation and Governing Equations 
The flow Hydromagnetic micropolar fluid passing an inclined vertical, exponentially stretching 

two-dimensional sheet in porous medium as sketched in Figure 1 is considered. The problem 

investigated in this study goes with the assumption that the flow is steady and characterized by 

viscous dissipation, heat generation, radiation and Joule heating with effects of Navier slip at the 

boundary. As depicted in Figure 1, the coordinate system is similarly assumed to be (𝑥, 𝑦) having 

the corresponding components of velocity as (𝑢, 𝜈). In addition, the flow is assumed to be in 

𝑥 direction while y-axis is perpendicular to it, the external magnetic field of uniform strength 𝐵0 

is applied perpendicular to the flow direction whereas the induced magnetic field is negligible in 

comparison to the external magnetic field. The flow is also confined to the region 𝑦 >  0. The 

fluid velocity is 𝑢 = 𝑈𝑤 + 𝑈𝑠𝑙where 𝑈𝑤 and 𝑈𝑠𝑙 are the sheet and slip velocity respectively. The 

temperature of the fluid is 𝑇 = 𝑇𝑤 + 𝛿
𝜕𝑇

𝜕𝑦
 where 𝑇𝑤 is the sheet temperature and 𝛿 is the thermal 

slip factor. 

 

 
 

Fig. 1: The Physical Flow Geometry 

 Using the above described assumptions, Oberbeck-Boussinesq together with the usual boundary 

layer approximations, the modelled equations can be listed as: 
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(4) 

The appropriate boundary conditions are stated as: 

 
𝑦 = 0:   𝑢 = 𝑈𝑤 + 𝜁

𝜕𝑢

𝜕𝑦
,  𝜈 = 𝑉𝑤,  𝑁 = −𝑛

𝜕𝑢

𝜕𝑦
 ,  𝑇 = 𝑇𝑤 + 𝛿

𝜕𝑇

𝜕𝑦
 

𝑦 → ∞:  𝑢 ⟶ 0,  𝑁 ⟶ 0,   𝑇 ⟶ 0.  

(5)  

In Eqs. (1-5), 𝑢 and 𝑣 are velocity components given in 𝑥 and 𝑦 directions respectively, 𝜈 denotes 

kinematic viscosity whereas 𝑇 represents fluid temperature. Also, 𝑢𝑤 = 𝑈0𝑒(
𝑥

𝐿
), 𝑇𝑤 = 𝑇∞ +

𝑇0𝑒(
2𝑥

𝐿
),  𝑈0, 𝑇0 and 𝐿 are the stretching velocity, sheet temperature, a constant having the unit of 

speed for the stretching sheet, reference constant temperature and reference length respectively 

and 𝑇∞ is the free stream temperature. Following Seini and Makinde [27], 𝜎 = 𝜎0𝑒(
𝑥

𝐿
)
 is the 

electrical conductivity while 𝑁 is a symbol showing microrotation component whereas 𝐾𝑝 =

𝐾0𝑒(
𝑥

𝐿
)
 describes the porous medium permeability, 𝑉𝑤  = 𝑉0𝑒(

𝑥

2𝐿
),   𝑖𝑠 𝑡ℎ𝑒 suction/injection (𝑉𝑤 <

0 is suction, (𝑉𝑤 > 0 is injection), while 𝜌 stands for the fluid density, 𝐶p indicates the specific 

heat at constant pressure, 𝑘 symbolizes thermal conductivity, 𝐵0 is the constant magnetic field 

strength. Also, 𝜁 = 𝛼1𝑒−(
𝑥

2𝐿
)
 implies the velocity slip, 𝛿 = 𝛽1𝑒−(

𝑥

2𝐿
)
 is the thermal slip factor [30], 

𝜇 stands for the dynamic viscosity while 𝑟 indicates vortex or microrotation viscosity, Q= 𝑄0𝑒(
𝑥

𝐿
)
  

is the heat source/sink, 𝑗 = 𝑗0𝑒−(𝑥/𝐿) denotes micro-inertia density and 𝑗0 =
𝜈𝐿

𝑈0
, 𝛾 is the spin 

gradient viscosity, 𝛽0 indicates thermal expansion coefficient while 𝜎0, 𝑄0, 𝐾0 and 𝑉0 are constants, 

Also, 𝑛 is the microrotation parameter at the boundary with 0 ≤ 𝑛 ≤ 1 [31-33]. We remark also 

that when 𝑟 = 0, the velocity and microrotaion are decoupled. Similarly, on setting 𝛾 =  𝜅 = 𝑗 =
0, the set of Eqs. (1-4) reduces to that of Newtonian fluids. 

Various researchers including, Adeniyan [34] as well as Akinbobola and Okoya [35] have shown 

that the radiative heat flux 𝑞𝑟 can have the structure  givenin (6). By assuming small temperature 

diffrence within the flow, 𝑇4 can thus be expressed as a linear combination of the temperature and 

it can be expanded by Taylor series about 𝑇∞
4 . Neglecting higher order terms ands taking the 

derivative, Eq. (6) becomes (7). 
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In Eqs. (6-7) 𝜎⋆ 𝑎𝑛𝑑 𝛼⋆ represent Stefan Boltzmann constant and mean absorption 

coefficient in that order. With the use of the stream function (8) it is evident that Eq. 

(1) is valid, 
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(8) 

 

Also, Eqs. (2-5) have been translated from partial to ordinary differential equations by introducing 

Eq. (9) see [17, 19], 
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(9) 

Substituting Eq. (9) into Eqs. (2--5) and using (8) gives nonlinear ODEs as:  

 (1 + 𝐾)𝑓′′′ + 𝑓𝑓′′ − 2𝑓′2 + 𝐾𝑔′ + 𝐺𝑟𝜃 − 𝐻𝐷𝑓′ = 0 (10) 

 

 𝜆𝑔′′ + 𝑓𝑔′ − 3𝑓′𝑔 − 2𝐾𝐻(2𝑔 + 𝑓′′) = 0 (11) 

 

 
(1 +

4

3
𝑅) 𝜃′′ + Pr(𝑓𝜃′ − 4𝜃𝑓′ + 𝑄𝜃) + 𝑃𝑟𝐸𝑐 𝑓′′2 + 𝑃𝑟𝐸𝑐𝐻𝐷𝑓′2 = 0. 

 

(12) 

 

The boundary conditions become 

 𝜂 = 0: 𝑓′ = 1 + 𝛼𝑓′′,   𝑓 = 𝑓𝑤, 𝑔 = −𝑛𝑓′′, 𝜃 = 1 + 𝛽𝜃,   
 

       𝜂 ⟶ ∞:  𝑓′ = 0, 𝑔 ⟶ 0, 𝜃 ⟶ 0. 

  

    (13) 

Here, the differentiation is carried out with respect  to 𝜂.  The material (micropolar) parameter is 

represented by 𝐾 = 𝑟/𝜇  and the microrotation density parameter is symbolized as 𝜆 =
𝛾

𝜇𝑗
. Also 

𝛼 = 𝛼1 (
𝑈0

2𝜈𝐿
)

1

2
 indicates the velocity slip term while 𝛽 = 𝛽1 (

𝑈0

2𝜈𝐿
)

1

2
 is the thermal slip term, 𝐻𝐷 =

2 [
𝜎0𝐵0

2𝐿

𝜌𝑈0
+

𝜇𝐿

𝜌𝑈0𝐾0
] describes the Hartmann-Darcy term (accounting for the combined impact of the 

magnetic field and the homogeneous porous medium permeability), 𝑓𝑤 = −𝑉0 (
2𝐿

𝑈0𝜈
)

1

2
  describes  

suction/injection parameter (𝑓𝑤 > 0  suction while 𝑓𝑤 < 0  injection, 𝑃𝑟 =
𝜇 𝐶𝑝

𝑘 
 is the Prandtl 

number whereas the term indicating heat source/sink is symbolized as 𝑄 = 2𝑄0
  L/𝜌𝑈0𝐶𝑝, 𝐸𝑐 =

𝑈0
2

𝐶𝑝𝑇0
  stands for Eckert number, 𝑅 = (4𝜎⋆𝑇∞

3 )/𝛼⋆𝑘 is the radiation parameter, 𝐻 =
𝜈𝐿

𝑈0𝑗0
 denotes 

vortex viscosity parameter and 𝐺𝑟 = (2𝑔𝛽0𝑇0𝐿)/𝑈0
2 is the Grashof number.  



Eq. (14) describes the related quantities of engineering interest which are the skin friction, Nusselt 

number and the wall couple stress coefficient given as: 

 
𝐶𝑓𝑥 =

𝜏𝑤

𝜌𝑢𝑤
2
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) 

 

(14) 

 

where 
𝜏𝑤 =  [(𝜇 + 𝑟)𝜕𝑢/𝜕𝑦 + 𝑟𝑁]𝑦=0,   𝑞𝑤 = −𝑘 [

𝜕𝑇

𝜕𝑦
]

𝑦=0 

 
 

(15) 

The first term in Eq. (15) describes the wall shear stress whereas the second term respresents the 

surface heat flux. With the use of Eq. (9) and Eq. (15), the quantities in (14) respectively become 

 𝐶𝑓𝑥
⋆ = 𝑓′′(0), 𝑁⋆𝑢𝑥 = −𝜃(0),  𝐶⋆𝑠 = 𝑔′(0), (16) 

where  

        𝐶𝑓𝑥
⋆ =

1

√2
(𝑅𝑒𝑥)

1
2

(1+(1−𝑛𝐾))
𝐶𝑓𝑥, 𝑁⋆𝑢𝑥 = −√2(𝑅𝑒𝑥)−

1

2𝑁𝑢𝑥,  𝐶⋆𝑠 = 2𝜈𝐿𝑀𝑤/𝛾𝑢𝑤
2  

 

are the skin friction coeffient, Nusselt number, wall couple stress coerffient in that order and the 

local Reynolds number is 𝑅𝑒𝑥 =
𝑢𝑤𝐿 

𝑣
. 

3 Numerical Solution 

 The transmuted set of Eqs. (11-13) is a boundary value problem which are first translated 

converted into a system of first order ordinaty differential equations.We assume that 

 𝑓1 = 𝑓, 𝑓2 = 𝑓′, 𝑓3 = 𝑓′′, 𝑓4 = 𝑔, 𝑓5 = 𝑔′, 𝑓6 = 𝜃, 𝑓7 = 𝜃′ , (17) 

  

𝑓3
′ =

2𝑓2
′2

− 𝑓1𝑓3  − 𝐾𝑓5 − 𝐺𝑟𝑓6 + 𝐻𝐷𝑓2

(1 + 𝐾)
 

 

 

(18) 

  

𝑓5
′ =

3𝑓2𝑓4 + 2𝐾𝐻(2𝑓4 + 𝑓3) − 𝑓1𝑓5

𝜆
 

 

 

(19) 

  

𝑓7
′ =

−𝑃𝑟(𝑓1𝑓7 − 4𝑓6𝑓2 + 𝑄 𝑓6 + 𝐸𝑐𝑓3
2 + 𝐸𝑐𝐻𝐷𝑓2

2)

(1 +
4
3 𝑅)

 

 

 

(20) 

The boundary conditions translate to 

 𝑓1(0) = 𝑓𝑤, 𝑓2(0) = 1 + 𝛼𝑓3, 𝑓3(0) = 𝑝1, 𝑓4(0) = −𝑛𝑓3(0),  𝑓5(0) = 𝑝2 
 

𝑓6(0) = 1 + 𝛽𝑓7,  𝑓7(0) = 𝑝3,   𝑓2(∞) ⟶ 0, 𝑓4(∞) ⟶ 0,   𝑓6(∞) ⟶ 0 
 

 

(21) 

The unspecified initial conditions 𝑝1 = 𝑓′′(0), 𝑝2 = 𝑔′(0), and 𝑝3 = 𝜃′(0) have been 

determined by applying the shooting technique. After obtaining 𝑝1, 𝑝2 and 𝑝3 then we have 

employed fourth-order Runge-Kutta technique with step size ∇𝜂 = 0.01 and the solution is 

obtained with a tolerance limit of 10−7. 

 

 



 4 Results Analysis and Discussion 

For effective discussion of the results generated in the current work, the numerical computations 

are analyzed both with the constructed graphs and tables. The analysis has been carried out for the 

following controlling parameters: material (micropolar) parameter 𝐾, velocity slip parameter 𝛼, 
thermal slip parameter 𝛽, microrotation density parameter 𝜆, vortex viscosity parameter 𝐻, 

Hartmann-Darcy parameter 𝐻𝐷 , Prandtl number 𝑃𝑟, radiation parameter 𝑅, suction/injection 

parameter 𝑓𝑤, Eckert number 𝐸𝑐 𝑎𝑛𝑑 heat source (or sink) parameter 𝑄. We have made use of 

the underlisted values for the controlling parameters: 𝐾 = 𝐺𝑟 = 𝜆 = 𝐻𝐷 , 𝛽 = 1.0, 𝛼 = 0.3, 𝑅 =
𝐸𝑐 = 0.1, 𝑓𝑤 = 0.5, 𝑄 = 0.2, 𝑛 = 0.5, 𝑃𝑟 = 0.71. Unless otherwise mentioned on the plots.  

In the absence of the microrotation equation (Eq. 2), the material (micropolar) parameter 𝐾, the 

velocity and thermal slips parameters, the problem in this work reduces to that of [29]. For the 

sake of validation with existing results of Bidin & Nazar [36] and Mukhopadhyay [30] we have 

replaced the coefficient “4” in the term 𝜃𝑓′ in Eq. (13) by “1” . This does not affect the authencity 

of the present result. The numerical scheme is thus verified by comparing the computed values of 

𝑁⋆𝑢𝑥with the existing works of [36], [30] and [29] for some limiting situations with variations in 

𝑃𝑟. It is evident from Table 1 that a strong relationship exists among the comparisons.  

Table 1 

Computed values of 𝑁⋆𝑢𝑥 for variation in 𝑃𝑟 and R when 𝐻𝐷 , 𝐾, 𝛼, 𝛽, 𝐸𝑐, 𝐻, 𝑄, 𝑅 = 𝑓𝑤 = 0  

𝑷𝒓 𝑹 Bidin & Nazar 

[36] 

Mukhopadhyay 

[30] 

Adeniyan & Adigun 

[29] 

Present 

Results 

1.0 0 0.9547 0.9547 0.95485201 0.9548106 

 

3.0  1.8691 1.8691 1.869061724 

 

1.8690688 

 

5.0  - 2.5001 2.500122587 2.5001280 

 

10.0  - 3.6603 3.660365072 3.6603693 

 

1.0 1.0 0.5315 0.5311 0.537337859 0.5353012 

 

2.0  1.0735 1.0734 - 1.0735162 

 

3.0 0.5 1.3807 1.3807 - 1.3807451 

 

 

Furthermore, comparison of 𝐶𝑓𝑥
⋆  and 𝑁⋆𝑢𝑥 obtained in this work for variation in 𝑅 and 𝐸𝑐 agrees 

well with that of Seini and Makinde [27] for some limiting situations as depicted in Table 2. 

 Table 3 displays the computed values of 𝐶𝑓𝑥
⋆ and 𝑁⋆𝑢𝑥 for micropolar and Newtonian fluids for 

changes in the values of the Hartmann-Darcy parameter 𝐻𝐷, velocity slip parameter 𝛼, thermal 

slip parameter 𝛽 and Eckert number 𝐸𝑐. It is conspicuously noticed from this table that the 



values of 𝐶𝑓𝑥
⋆  for a micropolar fluid are lower than the corresponding values of the Newtonian 

fluid with an increase in 𝐻𝐷 , 𝛼, 𝛽 and Ec. 

Table 2 

Computed values of 𝐶𝑓𝑥
⋆  and 𝑁⋆𝑢𝑥with [27] for 𝑅 𝑎𝑛𝑑 𝐸𝑐 with 𝑃𝑟 = 0.71 while  𝐻𝐷 , 𝐾, 𝐸𝑐,

𝛼, 𝛽, 𝑓𝑤, 𝑄, 𝑅 = 0 

  Seini & Makinde [27] Present Results 

𝑹 𝑬𝒄 𝑪𝒇𝒙
⋆     𝑵⋆𝒖𝒙 𝑪𝒇𝒙

⋆  𝑵⋆𝒖𝒙 

0.0 

0.1 

0.5 

0.1 

0.1 

1.0 

1.0 

1.0 

2.0 

3.0 

1.629178 

1.629178 

1.629178 

1.629178 

1.629178 

-0.006337 

0.006964 

0.035754 

-0.598521 

-1.204006 

1.6291778 

1.6291778 

1.6291778 

1.6291778 

1.6291778 

-0.0063379 

0.0069647 

0.0357547 

-0.5985207 

-1.2040062 

 

 

Table 3 

Values of 𝐶𝑓𝑥
⋆  and 𝑁⋆𝑢𝑥 for variations in 𝐻𝐷 , 𝛼, 𝛽 and 𝐸𝑐. 

    

   Micropolar Fluid  Newtonian Fluid  

𝑯𝑫 

 

𝜶 

 

𝜷 

 

𝑬𝒄 

 

𝑪𝒇𝒙
⋆  𝑵⋆𝒖𝒙 𝑪𝒇𝒙

⋆  𝑵⋆𝒖𝒙 

0.0 

1.0 

3.0 

5.0 

0.3 

 

1.0 0.1 0.5973747 

0.7414607 

0.9381281 

1.0765975 

0.5864942 

0.5584511 

0.5137339 

0.4766906 

0.8197306 

0.9946504 

1.2247594 

1.3797858 

0.5610731 

0.5266762 

0.4726876 

0.4298266 

1.0 0.1 

0.5 

1.5 

3.0 

  0.9330780 

0.4395287 

0.3423427 

0.2068135 

0.5710755 

0.5281715 

0.5144845 

0.4907360 

1.3684405 

0.5177767 

0.3872402 

0.2210951 

0.5436416 

0.4951253 

0.4838322 

0.4672901 

 0.3 0.1 

0.5 

1.5 

3.0 

 0.6808540 

0.7414607 

0.7544545 

0.7730773 

1.1913225 

0.5584511 

0.4325054 

0.2584982 

0.8958823 

0.9946504 

1.0177197 

1.0528155 

1.0882682 

0.5266762 

0.4116810 

0.2499576 

  1.0 0.05 

0.3 

0.6 

1.0 

0.7437231 

0.7325316 

0.7194555 

0.7025064 

0.5664145 

0.5269921 

0.4808902 

0.4212080 

0.9969028 

0.9857161 

0.9725144 

0.9552154 

0.5320998 

0.5051342 

0.4732391 

0.4313896 

 

 

       

 

 

 This clearly shows that fluids characterized by microstructures and additives suspensions tend to 

lower the viscous drag as compared to Newtonian fluid. To be more specific, as the velocity slip 

parameter 𝛼 rises from 0.1 to 3.0, the rate of decrease in 𝐶𝑓𝑥
⋆ is 78% for the micropolar fluid whereas 

the corresponding decrease is 83% for the Newtonian fluid.  Also, for the Newtonian fluid, the 



rate of increase in 𝐶𝑓𝑥
⋆  is 68% whereas that of micropolar fluid is 80% while the rate of heat 

transfer reduces by 23% for the Newtonian fluid with corresponding reduction of 19% for the 

micropolar fluid as 𝐻𝐷 rises from 0 to 5.0. Moreover, observation clearly indicates that the values 

of 𝑁⋆𝑢𝑥 indicating the heat transfer at the sheet surface for the Newtonian fluid are lower than the 

corresponding values of the micropolar fluid with an increase in 𝐻𝐷 , 𝛼, 𝛽 and Ec. Specifically, 

𝑁⋆𝑢𝑥 for the micropolar fluid reduces by 78% (or 14%) when 𝛽 ( 𝑜𝑟 𝛼) increases from 0.1 to 3 

whereas this reduction is 77% (or 13%) in the Newtonian fluid. The rate of heat transfer also drops 

by 26% for the Newtonian fluid as 𝐸𝑐 increases from 0.05 to 1.0 whereas this drop is only 10% 

in the micropolar fluid. 

Table 4 illustrates the influences of parameters 𝐾, 𝑃𝑟, 𝑅, 𝑓𝑤, 𝐺𝑟 and 𝜆 on 𝐶𝑓𝑥
⋆ , 𝑁⋆𝑢𝑥 and 𝐶⋆𝑠.  

From this table, it is observed that 𝐶𝑓𝑥
⋆ as well as 𝐶⋆𝑠 decreases with growing values of the material 

(micropolar) parameter 𝐾, radiation parameter 𝑅, injection parameter 𝑓𝑤 < 0, Grashof number 

𝐺𝑟 and the microrotation density parameter 𝜆 whereas 𝐶𝑓𝑥
⋆  grows with 𝑃𝑟 and 𝑓𝑤. Meanwhile, the 

parameters 𝐾, 𝑃𝑟 , 𝑓𝑤 > 0, 𝐺𝑟 and 𝜆 enhance 𝑁⋆𝑢𝑥 while the parameters 𝑅, 𝑓𝑤 < 0 reduces rate 

of heat transfer. These results indicate that the presence of micro-particles tends to reduce the drag 

effect while enhancing heat transfer rate.   

Table 4  

Values of 𝐶𝑓𝑥
⋆ , 𝑁⋆𝑢𝑥 and 𝐶⋆𝑠 for variations in 𝐾, 𝑃𝑟, 𝑅, 𝑓𝑤, 𝐺𝑟 and 𝜆 

𝑲 

 

𝑷𝒓 𝑹 𝒇𝒘 𝑮𝒓 𝝀 𝑪𝒇𝒙
⋆  𝑵⋆𝒖𝒙 𝑪⋆𝒔 

0.0 

1.5 

3.0 

071 0.1 1.0 1.0 1.0 0.9946504 

0.6677167 

0.5247803 

0.5266762 

0.5668222 

0.5811103 

0.7687710 

0.4659584 

0.3100913 

 1.0 

1.5 

2.5 

    0.7567499 

0.7711788 

0.7840882 

0.6083422 

0.6636942 

0.7259503 

0.5589718 

0.5693515 

0.5801830 

  0.2 

0.4 

1.0 

   0.7359532 

0.7260094 

0.7028073 

0.5418519 

0.5131326 

0.4503678 

0.5460749 

0.5404235 

0.5279026 

   -1.0 

-0.4 

0.4 

1.0 

  0.5590127 

0.6240388 

0.7272081 

0.8167923 

0.4883861 

0.5149280 

0.5533926 

0.5843312 

0.2820376 

0.3648757 

0.5243001 

0.6955248 

    0.0 

2.0 

5.0 

 0.8099592 

0.6806244 

0.5215765 

0.5466010 

0.5667388 

0.5835472 

0.6077389 

0.4932359 

0.3336177 

     0.1 

2.0 

3.0 

0.7361091 

0.7325289 

0.7276194 

0.5595564 

0.5604010 

0.5616717 

0.3992181 

0.3327680 

0.2652037 

 



Figures 2-4 portray the behaviour of 𝐾 on the dimensionless velocity, temperature and 

microrotation fields respectively. It is conspicuously seen that the velocity appreciates with a 

corresponding increase in the momentum boundary layer thickness with growth in 𝐾. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Variation of K on Velocity profile  Fig. 3. Impact of K on Temperature field 

 

 

 

 Fig. 4. Microrotation field for 𝐾                Fig. 5. Velocity profiles for 𝛼  

 

The increase in the magnitude of K causes a reduction in the drag (see Table 4) which in turn 

facilitates the fluid motion as shown in Figure 2. Conversely, the thermal and microrotation 

K=0, 1.5, 3.0, 5.0 

𝛼 = 0.3, 𝛽 =  𝜆 = 𝐺𝑟 =

𝐻𝐷 = 1, Pr = 0.72, fw = H =

.5, Ec = R = 0.1, Q = 0.2,   

K=0, 1.5, 3.0, 5.0 

𝛼 = 0.3, 𝛽 =  𝜆 = 𝐺𝑟 = 𝐻𝐷 =

1, Pr = 0.72, fw = H =

0.5, Ec = R = 0.1, Q = 0.2,   

K=0, 1.5, 3.0, 5.0 

𝛼 = 0.3, 𝛽 =  𝜆 = 𝐺𝑟 = 𝐻𝐷 =

1, Pr = 0.72, fw = H =

0.5, Ec = R = 0.1, Q = 0.2,   

𝛼=0, 0.5, 1.5, 3.0 

𝐾 = 1.0, 𝛽 =  𝜆 = 𝐺𝑟 =

𝐻𝐷 = 1, Pr = 0.72, fw =

H = 0.5, Ec = R =

0.1, Q = 0.2,   



boundary layers become thin with rising values of K. This in turn leads to a decline in the 

temperature and microrotation distributions across as displayed in Figures 3 and 4.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Impact of 𝛼 on Temperature  Fig. 7.Variation of 𝛼 on Microrotation 

The impact of velocity slip parameter 𝛼 on the velocity, temperature and microrotation fields is 

showcased in Figures 5-7.  It is seen that growing values of 𝛼 tends to lower the velocity. This is 

so because the momentum generated by the stretching sheet is partly transmitted to the micropolar 

fluid in the presence of velocity-slip, hence a reduction in the fluid flow as depicted in Figure 5. 

Besides, an increase in the tightness of the porous medium occurs with a rise in 𝐻𝐷 since it is a 

combination of both magnetic field and porous mediums. It is also an indication that the 

permeability stabilizes the boundary layer growth. Based on the resistance imposed on the fluid  

 

 

 

 

 

 

 

 

 

     Fig. 8. Effect of 𝛽 on Temperature            Fig. 9. Effect of 𝜆 on Microrotation 

𝛽 =0, 0.5, 1.5, 3.0 

 𝐾 = 1.0, 𝛼 = 0.3, 𝜆 =

𝐺𝑟 = 𝐻𝐷 = 1, Pr =

0.72, fw = H = 0.5, Ec =

R = 0.1, Q = 0. 

𝜆 =0, 0.1, 0.5, 3.0,  𝐾 =

1.0, 𝛼 = 0.3, 𝛽 =  𝐺𝑟 =

𝑀 = 1, Pr = 0.72, fw =

H = 0.5, Ec = R =

0.1, Q = 0.2 

𝛼=0, 0.5, 1.5, 3.0 𝐾 = 1.0, 𝛽 =

 𝜆 = 𝐺𝑟 = 𝐻𝐷 = 1, Pr =

0.72, fw = H = 0.5, Ec = R =

0.1, Q = 0.2 

 

𝛼=0, 0.5, 1.5, 3.0 𝐾 = 1.0, 𝛽 =

 𝜆 = 𝐺𝑟 = 𝐻𝐷 = 1, Pr = 0.72,

fw = H = 0.5, Ec = R =

0.1, Q = 0.2 

 



 

 

 

 

 

 

 

 

 

 

         Fig. 10. Variation of 𝐻𝐷 on Velocity profiles   Fig. 11. Temperature profiles for 𝐻𝐷  

  Figure 6 indicates that the temperature profile is advancing as the magnitude of the slip parameter 

𝛼 grows. The response of the microrotation field to changes in 𝛼 follows that of velocity profiles 

as illustrated in Figure 7. It is revealed in Figure 8 that rising values of the term 𝛽 indicating 

thermal slip parameter 𝛽 creates a reduction in the temperature distribution as well as lowering the 

thermal boundary thickness.  

 

 

 

 

 

 

 

      

 

 

 Fig. 12. Microrotation profiles for 𝐻𝐷           Fig. 13.  Variation of 𝑓𝑤 on velocity field  

 

The impact of microrotation density parameter 𝜆 on the microrotation profiles is exhibited in 

Figure 9, in this figure, the microrotation field is seen to advance in the presence of the micro-

particles. Figures 10-12 show the combined influence of the magnetic and homogeneous porous 

𝐻𝐷= 0, 1, 3.0, 5.0 

 𝐾 = 1.0, 𝛼 = 0.3, 𝛽 =

  𝜆 = 𝐺𝑟 = 1, Pr =

0.72, fw = H = 0.5, Ec =

R = 0.1, Q = 0.2 

 

𝐻𝐷=0, 1, 3.0, 5.0 

 𝐾 = 1.0, 𝛼 = 0.3, 𝛽 =   𝜆 =

𝐺𝑟 = 1, Pr = 0.72, fw = H =

0.5, Ec = R = 0.1, Q = 0.2 

𝑓𝑤 = -1, -0.4, 0, 0.4, 1.0 ;       

𝐾 = 1.0, 𝛼 = 0.3, 𝛽 =   𝜆 =

𝐺𝑟 = 𝐻𝐷 = 1, Pr = 0.72, H =

0.5, Ec = R = 0.1, Q = 0.2 

 

𝐻𝐷= 0, 1, 3.0, 5.0 ,;     

𝐾 = 1.0, 𝛼 = 0.3, 𝛽 =   𝜆 =

𝐺𝑟 = 1, Pr = 0.72, fw = H =

0.5, Ec = R = 0.1, Q = 0.2 



medium permeability parameter known as Hartmann-Darcy parameter 𝐻𝐷 on the dimensionless 

quantities. Clearly, the fluid motion falls as 𝐻𝐷 rises as noted in Figure 10. This can be linked to 

the imposition of the transverse magnetic field since the fluid is electrically conducting, the 

magnetic field creates a retarding force called Lorentz force which act to reduce the fluid flow. 

Besides, an increase in the tightness of the porous medium occurs with a rise in 𝐻𝐷 since it is a 

combination of both magnetic field and Darcy term. It is also an indication that the permeability 

stabilizes the boundary layer growth. Based on the resistance imposed to the fluid motion by 

Lorentz and Darcy forces, a rise in the temperature profiles is noticed with growing values of 𝐻𝐷 

as plotted in Figure 11. 

 

Figure 12 explains that rising values of 𝐻𝐷 
 facilitates the growth of microrotation field near the 

exponentially stretching sheet but away from the sheet the opposite trend is noticed. Figures 13-

14 depict the responses of 𝑓𝑤 as respectively relates to velocity and thermal fields. Both velocity 

and temperature profiles depreciate as (𝑓𝑤 > 0) advances in magnitude. That is, rising values of 

𝑓𝑤 >  0 indicating suction have a lowering effect on both dimensionless quantities. This is due 

to the fact that as the heated micropolar fluid is being pushed towards the sheet, there is a resistance 

by the buoyancy force on the account of high viscosity. Conversely, the imposition of wall fluid 

injection 𝑓𝑤 <  0 creates a reverse trend. 

The plot of temperature profiles against 𝜂 for changes in 𝐸𝑐 is sketched in Figure 15.  Here, it is 

clear that rising values of 𝐸𝑐 enhances the thermal boundary layer and in turn boost the temperature 

distribution because as 𝐸𝑐 rises more heat is generated due to drag between the fluid particles.  

 

 

 

 

 

 

 

 

 

 

 

 

    

   Fig. 14. Effect of 𝑓𝑤 on Temperature     Fig. 15. Effect of 𝐸𝑐 on Temperature profiles 

 

 

𝑓𝑤 = -1, -0.4, 0, 0.4, 1.0 ;       𝐾 =

1.0, 𝛼 = 0.3, 𝛽 =   𝜆 = 𝐺𝑟 =

𝐻𝐷 = 1, Pr = 0.72, H = 0.5, Ec =

R = 0.1, Q = 0.2 

 

𝐸𝑐 = 0.05, 0.2. 0.6, 1.0 

 𝐾 = 1.0, 𝛼 = 0.3, 𝛽 =   𝜆 =

𝐺𝑟 = 𝐻𝐷 = 1, Pr = 0.72, R =

0.1, Q = 0.2, H = 0.5 



 

 

 

 

 

 

 

 

 

 Fig. 16. Variation of 𝐺𝑟 on Velocity field          Fig. 17. Impact of 𝐺𝑟 on Temperature 

Figures 16-17 are the plots portraying the impact of the Grashof number on the profiles of both 

velocity and temperature. In Figure 16, the velocity increases as the magnitude of 𝐺𝑟 rises because 

the motion of the fluid is enhanced by the buoyancy forces corresponding to an increase in 𝐺𝑟, the 

buoyancy forces act as a favourable pressure gradient advancing the fluid motion whereas the 

temperature profiles reduce as the magnitude of 𝐺𝑟 increases as shown in Figure 17. 

 

5. Conclusion 

Hydromagnetic flow and heat transfer of an incompressible dissipative micropolar fluid over an 

exponentially stretching vertical sheet in a saturated porous medium has been investigated. The 

flow is influenced by both velocity and thermal slips. The system of equations governing the 

fluid flow and heat transfer has been numerically solved via shooting technique cum fourth order 

Runge-Kutta algorithms. The impacts of various controlling parameters have been examined by 

means of graphs as well as tables. From this study we note that: 

 The momentum as well as microrotation boundary layer thickness reduces with an increase 

in the velocity slip parameter 𝛼 while the thermal boundary layer thickens with a rise in 𝛼 

but falls with growing values of thermal slip parameter 𝛽. 

 The values of 𝐶𝑓𝑥 for a Newtonian fluid are higher than the corresponding values of the 

micropolar fluid for the parameters 𝐻𝐷 . 𝛼, 𝛽, 𝐸𝑐. The implication of this is that, the use of 

micropolar fluid reduces the frictional drag along the sheet better than the Newtonian fluid. 

 The rate of heat transfer for the Newtonian fluid is lower than that of the micropolar fluid 

for the embedded controlling parameters. 

 An increase in the magnitude of the velocity slip parameter causes a reduction in both 𝐶𝑓𝑥 

and 𝑁𝑢𝑥. Conversely, 𝐶𝑓𝑥 increases while 𝑁𝑢𝑥 drops as the thermal slip 𝛽 increases. 

 

 

 

 

𝐺𝑟 = 0, 2.0, 5.0, 10.0 

𝐾 = 1.0, 𝛼 = 0.3, 𝛽 =   𝜆 =

𝐻𝐷 = 1, Pr = 0.72, Ec = R =

0.1, Q = 0.2 , H=fw=0.5 

𝐺𝑟 = 0, 2.0, 5.0, 10.0 

𝐾 = 1.0, 𝛼 = 0.3, 𝛽 =   𝜆 =

𝐻𝐷 = 1, Pr = 0.72, , Ec = R =

0.1, Q = 0.2 ,H=fw=0.5 
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