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Abstract 

This article presents hydromagnetic flow and heat transfer characteristics of micropolar fluid along an inclined 

permeable surface under the influences of variable electric conductivity, non-uniform heat generation/absorption, 

surface mass flux and variable heat flux condition. The model equations are developed as nonlinear partial differential 

equations and then transformed into a system of nonlinear ordinary differential equations by appropriate similarity 

transformation variables. Thereafter, a numerical solution is sought for the reduced governing equations via Runge-

Kutta-Fehlberg integration scheme cum shooting techniques. The findings are both displayed on graphs and tables for 

the influences of the embedded controlling parameters. In the limiting situations, the results generated are in good 

agreement with the earlier published data in the literature. The results revealed that the momentum and thermal 

boundary layer thicknesses fall with a rise in the surface temperature parameter while the opposite occurs with a rise 

in both space and heat generation parameters 

Keywords: Micropolar fluid; inclined sheet, permeable surface; non-uniform heat source/sink 

 

1.0 INTRODUCTION 

The dynamics of non-Newtonian fluids have gained prominence in the recent times owing to its practical scientific 

and industrial applications. Non-Newtonian fluids differ from Newtonian fluids most commonly due to the fact that 

the viscosity is dependent on the shear rate or shear rate history. These fluids do not follow the Newton’s law of 

viscosity. Examples includes wall paint, blood, biological fluids (mucus, semen, synovia fluid), butter, cheese, etc. 

Micropolar fluids belong to non-Newtonian fluids due to its non-symmetric stress tensor.  The model of micropolar 

fluids as well as the thermal conduction effects was initiated by Eringen (1966) as a sub-class of simple microfluid 

which was first proposed by Eringen (1964). Actually, this concept has been an active area of research for scientists 

and engineers because it offers a good mathematical model for studying the flow of complex and complicated fluids 

which includes suspension solution, fluids with certain additives, animal blood, liquid crystals, polymeric fluids and 

clouds with dust (Chen et al., 2011; Hayat et al., 2011).  More areas of applications of micropolar fluids are polymer 

engineering, drug suspension in pharmacology, sediments in rivers, biological fluid modelling, crude oil extraction, 

food processing manufacturing and so on. In the physical description, micropolar fluids consists of rigid, randomly 

oriented (or spherical) particles suspended in a viscous medium, where particles deformation is ignored. Due to the 

complexity nature of such fluids individual fluid particles may vary in shapes and may shrink and/or expand, 

occasionally changing shapes and rotating independently of the rotational movement of the fluid (Lukaszewicz, 1999).  

Various transport activities that take place both in nature and industies include flow of fluids driven by buoyancy 

forces due to variations in density caused by variations in temperature. The use of magnetic field in engineering 

problems is crucial in various areas such as in plasma studies, nuclear reactors, oil exploration, geothermal energy 

extractions, MHD generators, and boundary layer control in the field of aerodynamic. In view of these immense 

applications, various reaserchers have invesigated such studies. (see Sreenivasulu et al., 2018; Fatunmbi and Fenuga, 

2018, Fatunmbi and Adeniyan, 2018, Kumar, 2009, etc).  

In engineering processes, suction/injection plays a key role for instance, it can is applicable in the design of thrust 

bearing and radial diffusion and thermal oil recovery. Iinjection is used in boundary layer control applications (e. g. 

film coating, polymer fiber coating and coating of wires), adding of reactants, prevention of corosion, reducing drag, 

etc. Also, suction can also be applied to remove reactants in chemical processes. To this end, Mukhopadhyay (2013) 

studied the effects of suction/injection on MHD boundary layer flow past an exponentially stretching sheet with 

thermal radiation while Hayat et al. (2010) included suction/injection effects while studying transfer of heat over a 

permeable stretching sheet. The aforementioned researches have been carried out with constant electric conductivity 

with or without uniform heat source/sink. However, the electric conductivity may vary with the fluid velocity and the 

heat source/sink can also be dependent not only on the temperature but on the space.(see Rahman, et al, 2009, Das 

2011). 
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The aim of this study is to investigate boundary layer flow and heat transfer characteristics on an electrically 

conducting micropolar fluid over an inclined permeable surface with velocity dependent electric conductivity, variable 

magnetic field and variable heat flux. With the use of appropriate similarity transformation variables, the modelled 

nonlinear partial differential equations governing the problem are transformed into a system of nonlinear ordinary 

differential equations and then solved via the shooting method alongside Runge-Kutta-Fehlberg integration scheme. 

The effeects of the fluid controlling parameters embedded such as the suction/injection, variable heat flux exponent, 

micropolar parameters and inclination are presented and discussed. 

 

2.0 Problem Formulation 

 

Consider the flow and heat transfer of an electrically conducting, viscous and incompressible micropolar fluid along 

an inclined permeable sheet with Prescribed variable surface heat flux given as −𝜅
𝜕𝑇

𝜕𝑦
= 𝑞𝑤 = 𝐴 (

𝑥

𝐿
)

𝑛

, where 𝐴 is a 

constant and 𝑛 is power law temperature exponent parameter. The flow is assumed to be steady, two-dimensional and 

laminar with variable elcectric conductivity as well as variable applied magnetic field strength 𝑩 =  (0, 𝐵(𝑥), 0) as 

respectively given in Eq. (6)  and Eq. (7). The flow direction is assumed to be in the 𝑥 axis direction which is taken 

along the surface with 𝑦 axis normal  to it. The magnetic Reynolds number is assumed to be small so that the induced 

magnetic field is negligible in comparison to the to the applied magnetic field. Darcy, Forchheimer resistance and 

thermal radiation terms are not considered in this study. In view of the aforementioned assumptions together with the 

Boussinesq and the usual boundary layer approximations, the governing equations of continuity, momentum, 

microrotation and energy equations are respectively modelled in Eqs. (1-4). 

 
Fig. 1: Physical model and coordinate system 
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+
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𝜌
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(𝑇 − 𝑇∞)𝑐𝑜𝑠𝜑 −
𝜎0

′(𝐵(𝑥)) 
 2

𝜌
𝑢, 

 

 

(2) 

 𝜌𝑗 (𝑢
𝜕𝑁

𝜕𝑥
+ 𝜈

𝜕𝑁

𝜕𝑦
) = 𝛾

𝜕2𝑁

𝜕𝑦2 − 𝜇𝑟  (2𝑁 +
𝜕𝑢

𝜕𝑦
), (3) 
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𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2+ 
1

𝜌𝑐𝑝
(𝜇 + 𝜇𝑟) (

𝜕𝑢

𝜕𝑦
)

2

+
𝑞′′′

𝜌𝑐𝑝
. 

 

 

 

 

(4) 

The appropriate boundary conditions for Eqs. (1-4) are given by 

 
𝑦 = 0:   𝑢 = 0,  𝜈 = 𝑉𝑤 ,  𝑁 = −𝑟

𝜕𝑢

𝜕𝑦
 ,  − 𝜅

𝜕𝑇

𝜕𝑦
= 𝑞𝑤 = 𝐴 (

𝑥

𝐿
)

𝑛

,  

𝑦 → ∞:  𝑢 = 𝑈∞ = 0,  𝑁 = 0,   𝑇 ⟶ 𝑇∞. 

   (5)  

Where 𝑢 and 𝜈 are the components of the velocity in 𝑥 and 𝑦 directions respectively, 𝜈 is the coefficient of kinematic 

viscosity, 𝑇 is the fluid temperature, 𝛽𝑇 is the thermal expansion coefficient. Similarly,  𝑉𝑤  𝑖𝑠 𝑡ℎ𝑒 suction/injection 

(𝑉𝑤 < 0 is suction, (𝑉𝑤 > 0 is injection), 𝑔 is the acceleration due to gravity, 𝜌 is the density, 𝑐p the specific heat at 

constant pressure, 𝜅 is the thermal conductivity, 𝑁 is the component of microrotation normal to 𝑥𝑦 − plane and 𝛾 is 

the spin gradient viscosity, 𝜑 indicates the inclination angle, 𝜇 is the dynamic viscosity 𝜇𝑟 while is the 

vortex/microrotation viscosity. In the energy Eq. (4), the 4th term indicates the viscous dissipation effect while the 5th 

term represents the non-uniform heat source/sink.  Also, 𝑟 is the microrotation surface boundary parameter with 0 ≤
𝑟 ≤ 1. The case when 𝑟 = 0 corresponds to 𝑁 = 0 which indicates the vanishing of the spin on the boundary, also 

represents a strong concentration of the micro-particles such that the micro-particles close to the wall are unable to 

rotate as shown by Jena and Mathur (1981). The case 𝑟 = 1/2 indicates weak concentration of micro-particles and 

the vanishing of anti-symmetric part of the stress tensor (Ahmadi, 1976). The situation when 𝑟 = 1 represents the 

vanishing of a linear combination of spin, shearing stress and couple stress which is an indication of turbulent boundary 

layer flows as reported by Peddieson (1972). 

It is to be noted also that when 𝜇𝑟 = 0, the velocity and microrotaion are decoupled and the macroscopic motion is 

unaffected by the microrotations. Similarly, when 𝛾 = 𝜇𝑟 = 𝑗 = 0, the set of Eqs. (1-4) reduces to two-dimensional 

flow of incompressible Newtonian fluids. 

The electric conductivity is assume to vary with the fluid velocity such as 

 𝜎0
′ = 𝜎0𝑢,          

 

(6) 

and in the like manner, the applied magnetic field strength varies with 𝑥 such as  

𝐵(𝑥) = 𝐵0𝑥−
1
2,          

(7) 

 

 

The 5th term in the energy equation (4) denotes the non-uniform heat source/sink and it is given as (see Rahman et al., 

2009) 

 q′′′ =
𝜅

2𝜈𝑥 
[𝑄(𝑇 − 𝑇∞) + 𝑄∗(𝑇𝑤 − 𝑇∞)e−η] 

 

(8) 

  

where 𝑄, 𝑄⋆ respectively represents the coefficient of space and temperature dependent heat source/sink. When 

𝑄 > 0 𝑎𝑛𝑑  𝑄⋆ > 0 then, a case of heat source is implied, however, the a case of heat sink is indicated when 

𝑄 < 0 𝑎𝑛𝑑  𝑄⋆ < 0.  

 The continuity Eq. (1) is satisfied by the introduction of the stream function defined by 

 

 

 

 
𝑢 =

𝜕𝜓 

𝜕𝑦
,   𝜈 −

𝜕𝜓 

𝜕𝑥
 

 

(9) 

 

Also, Eqs. (2-5) are reduced to dimensionless ordinary differential equations by using the following transformation 

variables (see Mondal et al., 2017; Rahman et al., 2009) 

 

𝜓 = (2𝑣𝑈0𝑥)
1
2𝑓(𝜂),   𝜂 = 𝑦 (

𝑈0

2𝜈𝑥
)

1
2

, 

𝑁 = (
𝑈0

3

2𝑣𝐿
)

1
2

𝑔(𝜂),  𝑇 = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝜃(𝜂) 

 

  

 

 

 

(10) 

 



4 
 

 

 

Thus, after substituting Eq. (10) into Eqs. (2-5) and in view of Eqs. (6-8) the following nonlinear coupled ordinary 

differential equations are obtained:  

 

 (1 + 𝐾)𝑓′′′ + 𝑓𝑓′′ + 𝐾𝑔′ + 𝐺𝑟𝜃𝑐𝑜𝑠𝜑 − 𝑀𝑓′2
= 0 (11) 

 

 
(1 +

𝐾

2
) 𝑔′′ + 𝑓𝑔′ + 𝑓′𝑔 − 2𝐾(2𝑔 + 𝑓′′) = 0 

 

(12) 

 

The energy equation (4) also becomes 

𝜃′′ + Pr(𝑓𝜃′ − (2𝑛 + 1)𝑓′𝜃 + 𝑄𝜃) + 𝑃𝑟𝐸𝑐 𝑓′′2 + (𝑄𝜃 + 𝑄∗𝑒−𝜂) = 0.         

(13) 

The boundary conditions are also transformed to 

 𝜂 = 0:  𝑓′ = 0, 𝑓 = 𝑓𝑤, 𝑔 = −𝑟𝑓′′, 𝜃 = −1,   
         
       𝜂 ⟶ ∞:  𝑓′ = 0, 𝑔 = 0, 𝜃 = 0. 

 

  

    (14) 

Here, prime denotes differentiation with respect  to 𝜂, 𝐾 = 𝜇𝑟/𝜇  is the material (micropolar) parameter,  𝑀 =
2𝜎0𝐵0

2

𝜌
  

is the Magnetic parameter and 𝐺𝑟 =
2𝑥𝑔𝛽𝑇(𝑇𝑤−𝑇∞)

𝑈0
2  is the Grashof number, 𝑃𝑟 =

𝜇𝑐𝑝

𝜅
 is the Prandtl number. Similarly,  

𝐸𝑐 =
𝑈0

2

𝜌 (𝑇𝑤−𝑇∞)
 stands for the Eckert number while  𝑓𝑤 = −𝑉0 (

2

𝑈0𝜈
)

1

2
  is the suction/injection parameter (𝑓𝑤 > 0  

suction , 𝑓𝑤 < 0  injection and 𝑓𝑤 = 0 corresponds to an impermeable sheet with 𝑉0 = 𝑉𝑤𝑥−
1

2 . 

 

3.0 Results and Discussion 

 

The influences of various controlling parameters have been checked on the dimensionless velocity, temperature and 

microrotation profiles with the use of graphs and tables.  Similarly, the reaction of the skin friction coefficient, Nusselt 

number and that of wall couple stress coefficient are tabulated with variations in the physical parameters. The default 

values adopted for computation in this study are: 𝐾 = 5.0, 𝐺𝑟 = 10, 𝑀 = 2.0, 𝑛 = 0.2, 𝑄 = 𝑄∗ = 0.5, 𝐸𝑐 = 0.02,
𝑓𝑤 = 0.5, 𝜑 = 30∘, 𝑃𝑟 = 0.73. The plots correspond to these values unless otherwise indicated on the graph.  

The nonnlinear differential equations (11-13) together with the boundary conditions (14) constitutes a two point 

boundary value problem (BVP) which are solved using shooting iteration technique alongside Runge-Kutta-Fehlberg 

integration scheme. In the absence of the suction/injection parameter 𝑓𝑤, Eckert number 𝐸𝑐 and the variable heat flux 

exponent parameter 𝑛, the problem  considered in this work reduces to that of Rahman et al. (2009). Hence, 

comparison of 𝐶𝑓𝑥 and 𝑁𝑢𝑥 of this work with Rahman, et al. (2009) for variations in 𝜑 and 𝑀 for both Variable 

Electric Conductivity (VEC) and Constant Electric Conductivity (CEC) are found to be in good agreement as recorded 

in Tables 1 and 2 respectively. This confirms the correctness of our code for this work. The quantities of engineering 

interest such as the skin friction coefficient 𝐶𝑓𝑥 and the Nusselt number 𝑁𝑢𝑥 (rate of heat transfer at the surface) are 

found out from the numerical computations. 
Similarly, in Tables 1 and 2, we have compared the response of the Variable Electric Conductivity (VEC) and the 

Constant Electric Conductivity (CEC) on the skin friction coefficient 𝐶𝑓𝑥 and the Nusselt number 𝑁𝑢𝑥 for various 

values of inclination angle 𝜑 and the magnetic field parameter. It is evidently shown that the skin friction coefficient 

as well as the rate of heat transfer reduces with an increase in 𝜑 as seen in Table 1. However, both the shear stress at 

the surface 𝐶𝑓𝑥  and the heat transfer 𝑁𝑢𝑥 are higher for the case of Constant Electric Conductivity (CEC) than that 

of Variable Electric Conductivity (VEC). 

In the like manner, Table 2 reveals that an increase in the magnetic field parameter 𝑀 has a diminishing reaction on 

the skin friction coefficient 𝐶𝑓𝑥  as well as on the rate of heat transfer at the surface for both cases of VEC and CEC. 

For physical quantities (𝐶𝑓𝑥  and 𝑁𝑢𝑥), the values of VEC are lower as compared with CEC. 
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Table 1: Comparison of values of  𝐶𝑓𝑥
   𝑎𝑛𝑑 𝑁  𝑢𝑥 with variation in 𝜑 

 

 Rahman, et al Present Results 

 𝐶𝑓𝑥 𝐶𝑓𝑥 𝑁𝑢𝑥 𝑁𝑢𝑥 𝐶𝑓𝑥 𝐶𝑓𝑥 𝑁𝑢𝑥 𝑁𝑢𝑥 

𝜑 𝑉𝐸𝐶 𝐶𝐸𝐶 𝑉𝐸𝐶 𝐶𝐸𝐶 𝑉𝐸𝐶 𝐶𝐸𝐶 𝑉𝐸𝐶 𝐶𝐸𝐶 

0∘ 4.2424 4.2932 0.6403 0.6536 4.2440 4.2922 0.6397 0.6531 

30∘ 3.9488 3.9859 0.6139 0.6245 3.9507 3.9851 0.6132 0.6240 

45∘ 3.5731 3.5942 0.5777 0.5848 3.5752 3.5936 0.5770 0.5842 

60∘ 3.0215 3.0233 0.5188 0.5201 3.0242 3.0229 0.5178 0.5194 

 

 

Table 2: Comparison of values of  𝐶𝑓𝑥
   𝑎𝑛𝑑 𝑁𝑢𝑥 with variation in 𝑀 

 

 Rahman, et al., (2009) Present Results 

 𝐶𝑓𝑥 𝐶𝑓𝑥 𝑁𝑢𝑥 𝑁𝑢𝑥 𝐶𝑓𝑥 𝐶𝑓𝑥 𝑁𝑢𝑥 𝑁𝑢𝑥 

𝑀 𝑉𝐸𝐶 𝐶𝐸𝐶 𝑉𝐸𝐶 𝐶𝐸𝐶 𝑉𝐸𝐶 𝐶𝐸𝐶 𝑉𝐸𝐶 𝐶𝐸𝐶 

         

0 4.2427 4.2427 0.6841 0.6841 4.2395 4.2395 0.6820 0.6820 

0.2 4.1950 4.2079 0.6740 0.6768 4.1931 4.2055 0.6222 0.6750 

0.5 4.1352 4.1606 0.6607 0.6665 4.1348 4.1591 0.6593 0.6651 

0.8 4.0859 4.1185 0.6493 0.6570 4.0864 4.1175 0.6480 0.6568 

1.0 4.0574 4.0927 0.6424 0.6509 4.0583 4.0919 0.6412 0.6500 

1.5 3.9973 4.0353 0.6270 0.6371 3.9988 4.0346 0.6262 0.6364 

2.0 3.9488 3.9859 0.6139 0.6245 3.9507 3.9851 0.6132 0.6240 

 

 

Table 3: values of 𝐶𝑓𝑥
   𝑎𝑛𝑑 𝑁  𝑢𝑥 with variation in 𝐺𝑟 when 𝑛 = 0, 𝑛 = 0.7, 𝑛 = 1.0 

 𝑛 = 0  𝑛 = 0.7  𝑛 = 1.0  

   

𝐺𝑟 𝐶𝑓𝑥 𝑁𝑢𝑥 𝐶𝑓𝑥 𝑁𝑢𝑥 𝐶𝑓𝑥 𝑁𝑢𝑥 

6.0 
7.5 
8.5 

10.0 

1.97650 
2.22249 
2.37773 
2.60069 

2.06171 
1.94590 
1.88781 
1.81938 

1.28545 
1.67052 
1.78826 
1.95605 

1.67231 
1.49877 
1.45475 
1.40162 

1.20207 
1.53972 
1.64862 
1.80357 

1.56979 
1.39923 
1.35838 
1.30884 

 

 

Table 3 depicts the influence of the Grashof number 𝐺𝑟 on the surface shear stress 𝐶𝑓𝑥 and the rate of heat transfer 

at the surface 𝑁𝑢𝑥  for various values of the variable heat flux exponent 𝑛. It is clearly shown that an increase in Gr 

enhances the surface shear stress 𝐶𝑓𝑥  while causing a reduction in the rate of heat transfer at the surface, i.e. 𝑁𝑢𝑥. 

However, with the imposition of the variable heat flux exponent 𝑛, the skin friction reduces better even with an 

increase in the Grashof number 𝐺𝑟. It is shown that the skin friction coefficient as well as the heat transfer rate is 

higher for the case of uniform heat flux (𝑛 = 0), hence, the application of variable heat flux can help to reduce the 

skin friction coefficient and as well lower the rate of heat transfer. 
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Figures 2-4 depict the effects of the heat flux exponent parameter 𝑛 on the dimensionless velocity, temperature and 

microrotation profiles respectively. It is noticed in Figures 2-3 that both the velocity and temperature profiles decrease 

as the magnitude of 𝑛 rises due to reduction in the hydromagnetic and thermal boundary layer thicknesses. On the 

contrary, the microrotation across the boundary layer appreciates as 𝑛 increases in magnitude as displayed in Figure 

4. 

Figures 5-7 illustrate the influence of the Grashof number on the velocity, temperature and microrotation profiles.  

Evidently, the velocity increases as the magnitude of 𝐺𝑟 rises as shown in Figure 5. Physically, 𝐺𝑟 indicates the 

relative effect of the thermal buoyancy force to the viscous hydrodynamic force in the boundary layer. Hence, an 

increase in 𝐺𝑟 enhances buoyancy forces which behaves as a favourable pressure gradient accelerating the fluid within 

the boundary layer. On the other hand, the temperature profiles depreciate as the magnitude of 𝐺𝑟 increases as shown  
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in Figure 6. The influence of 𝐺𝑟 is to decrease the 

microrotation profiles near the sheet but further away 

from the sheet, 𝐺𝑟 has no influence on the profiles as 

depicted in Figure 7. The momentum and thermal 

boundary layer thicknesses are found to diminish with 

a rise in the Prandtl number Pr as displayed in Figures 

8 and 9 respectively. These in turn reduces the velocity 

and also lowers the average temperature across the 

boundary layer while the microrotation profiles rises 

negatively as shown in Figure 10. Figures 11-12 depict 

the influence of the suction parameter 𝑓𝑤 > 0 on the 

velocity and temperature profiles respectively. 

There is a fall in the velocity and temperature profiles 

with a rise in the 𝑓𝑤 > 0. An increase in 𝑓𝑤 >  0 

causes a diminishing effect on both the velocity and 

temperature profiles due to the fact that the heated 

fluid is being pushed towards the sheet such that the 

fluid is brought closer to the surface which in turn 

leads to a reduction in the momentum and thermal 

boundary layer thicknesses.  

Figures 14-16 shows the effects of the material 

parameter 𝐾 on the velocity, temperature and 

microrotation profiles respectively. 

 

 
For Figure 14, it is noticed that the velocity near the 

sheet decreases with a rise in 𝐾 due to the reduction 

in the boundary layer thickness. However, further 

from the sheet the fluid motion accelerates. In the 

like manner, the thermal and microrotation boundary 

layer thicken with a rise in 𝐾 leading to a rise in the 

temperature and the microrotation across the 
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boundary layer as respectively shown in Figures 15 

and 16. 
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Figures 17-18 show the impact of the angle of inclination 𝜑 the velocity and temperature profiles.  There is a fall in 

the velocity as seen in Figure 17. Higher velocity is observed when the surface is vertical because as the surface is 

inclined, the buoyancy driving influence is reduced by a factor of cos 𝜑. On the other hand, the temperature profile 

appreciates with a rise in 𝜑 as seen in Figure 18. In Figure 19, the thermal boundary layer thickens with a rise in the 

space/temperature-dependent heat source 𝑄/𝑄∗. This in turn leads to a rise in the temperature profiles as energy is 

being generated with the imposition of 𝑄/𝑄∗. 

 

 

Conclusion 

The present study has investigated flow and heat transfer characteristics of an electrically conducting micropolar fluid 

over an inclined permeable sheet with variable electric conductivity as well as variable magnetic field in the presence 

of non-uniform heat source/sink and surface mass flux. The system of ordinary differential equations governing the 

fluid flow and heat transfer has been integrated by shooting technique alongside Runge-Kutta-Fehlberg integration 

scheme while the effects of various thermo-pyhsical properties are presented through graphs and tables. 

 The following main points are deduced as conclusion of this study: 
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 The hydrodynamic as well as thermal boundary layer thickness diminishes with an increase in the magnitude 

of variable heat flux exponent parameter 𝑛, Prandtl number 𝑃𝑟 and suction parameter 𝑓𝑤. 

 The temperature distribution across the boundary layer appreciates with an increase in the material parameter, 

𝐾 space/temperature-dependent heat source parameters 𝑄/𝑄∗and inclination angle parameter 𝜑 while the 

reverse is the case with an increase in Grashof number 𝐺𝑟. 
 Variable electric conductivity offers a better reduction in the viscous shear stress (𝐶𝑓𝑥) than the constant 

electric conductivity whereas the rate of heat transfer across the surface (𝑁𝑢𝑥) is higher for the constant 

electric conductivity. 

 The skin friction coefficient as well as the Nusselt number drops with a rise in the magnitude of both magnetic 

field parameter 𝑀 and inclination angle parameter 𝜑. 
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