
Heat transfer Analysis of Magneto-Micropolar Fluid Flow over an Inclined Non-linearly
Permeable Stretching Sheet with Variable Fluid Properties

E. O. Fatunmbi1, A. Adeniyan 2

1-2Department of Mathematics and Statistics, Federal Polytechnic, Ilaro, Nigeria.
E-mail: 1ephesus.fatunmbi@federalpolyilaro.edu.ng; 2aadeniyan@unilag.edu.ng

Corresponding author e-mail: ephesus.fatunmbi@federalpolyilaro.edu.ng

Abstract
In this study, an analysis of Magneto-micropolar fluid flow and heat transfer characteristics over an inclined
nonlinearly permeable stretching sheet is investigated. The fluid properties such as the dynamic viscosity and
thermal conductivity are taken to be temperature dependent while the electrical conductivity vary with the
fluid velocity. The influences of non-uniform heat source/sink, variable applied magnetic field with power law
surface temperature as the thermal boundary condition are also examined. Appropriate similarity transfor-
mation variables are employed to reduce the modelled governing equations into a system of nonlinear ordinary
differential equations. Subsequently, Runge-Kutta-Fehlberg integration scheme cum shooting techniques is
applied to yield the numerical solutions for the model. The findings are both depicted on graphs and tables
for various controlling parameters. In the limiting situations, the results generated compared favourably with
the earlier reported data in the literature. The results show that the momentum and thermal boundary layer
thicknesses fall with an increase in the nonlinear stretching parameter while the opposite occur with a rise
in the thermal conductivity parameter.
Keywords: Micropolar fluid; nonlinear stretching sheet; temperature-dependent properties; inclined sheet

1 Introduction

The study of non-Newtonian fluids has gain prominence due to its practical industrial and diverse applications
in engineering processes. Due to great diversity in the physical structure of non-Newtonian fluids, a single
constitutive Model cannot captured all, thus various Models exist such as Casson fluids, Jeffery fluids, Maxwell
fluids, Micropolar fluids etc. Notable among the non-Newtonians is the micropolar fluid (Eringen, 1966).
These are fluids with microstructure. They exhibit certain microscopic effect arising from the local structure
and micromotion of the fluid element.

Newtonian fluids cannot effectively describe the complex mechanical behaviour that fluid exhibit at micro
level. Micropolar fluid is prominent among others because it offers a good mathematical model for simulating
the flow characteristics of polymeric suspensions, colloidal fluids, liquid crystals, animal blood etc.

1.1 Various Applications of this Study

Various application of this study can be seen in engineering and industrial activities. Firstly, the study of
transfer over stretching surfaces has gained prominence due to its various industrial applications. A wider
range of applications of stretching plates are frequently encountered in extrusion of plastic sheet and metal
extrusion, hot rolling, drawing of plastic films paper and textile production, polymer processing industries
cooling of electronic devices by fans. Other areas are: manufacturing of plastic and rubber sheet, the cooling
of metallic sheets, etc.
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1.2 Micropolar Fluids Applications in Engineering

1.3 Review of Literature

Notable authors have worked on stretching sheet with or without variable properties. Authors such as Cortell
(2007, 2008); Hayat et al. (2008)and Kumar (2009) have researched into the influence of various parameters
on the flow of Newtonian fluid over a stretching sheet. Ahmad et al., (2014) investigated MHD micropolar
fluid flow on nonlinearly impermeable stretching sheet with constant properties while Salem (2013) studied
on MHD micropolar nonlinearly stretching sheet with variable viscosity.

Recently, Fatunmbi and Fenuga (2018) reported on the flow of an electrical conducting non-Newtonian
fluid of micropolar type with temperature-dependent material properties. Furthermore, Rahmanet al., (2009)
examined variable fluid properties on an inclined plate whereas Akinbobola and Okoya (2015) reported on
such problem with the flow of visco-elastic fluid on a stretching sheet with variable viscosity. Tripathy et al.
(2016) as well as Shamshuddin and Thunma (2019) investigated numerical MHD flow of micropolar fluid on
stretching fluid with constant properties. In the present work, we studied MHD micropolar fluid flow passing
an inclined sheet with variable properties and prescribed temperature.

2 Mathematical Formulation of the Problem

2.1 Basic Assumptions

The following assumptions are considered for the mathematical formulation of the model equations of the
fluid flow, microrotation and energy distributions.

• The flow is two-dimensional (x, y), incompressible and steady and the sheet is inclined, permeable and
stretching with velocity uw = cxr.

• The corresponding velocity components are (u, v). The x axis is taken along the direction of flow with
y axis normal to it.

• The fluid is electrically conducting Micropolar fluid.with the applied magnetic field being a function of
x and normal to the flow direction.

• The dynamic fluid viscosity and thermal conductivity are assumed to be temperature-dependent.

• The magnetic Reynolds number of the flow is taken to be small enough so that the induced magnetic
field is negligible and no electric field.
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• The electrical conductivity σ is assumed to be a function of u and non-uniform heat source/sink is
applied.

Figure 1. Flow Configuration and the Coordinate System

With the use of Oberbeck-Boussinesq and the boundary approximations, the boundary layer governing
equations for the model are given as follow:
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The suitable boundary conditions are::

u = uw = cxr, v = vw, N = −h∂u
∂y
, T = Tw = (Axn + T∞) at y = 0,

u −→ 0, N −→ 0, T −→ T∞ as y →∞.
(5)

The description of the embedded variables are as follows µ, ν, ρ∞, µr, j and γ represent the dynamic viscosity,
kinematic viscosity, density of the ambient fluid, vortex viscosity, micro inertial per unit mass and spin
gradient viscosity in that order. Also, T,N, κ represent the fluid temperature, component of microrotation
vector normal to x, y plane, thermal conductivity respectively.Likewise, the electrical conductivity is taken
to be dependent on the fluid velocity as

σ′0 = σ0u (6)

and the applied magnetic field is a function of x given as (see Rahman, Uddin and Aziz, 2009).

B(x) =
B0√
x

(7)

where σ0 and B0 are constants. Similarly, cp stands for the specific heat at constant pressure while T∞
indicates the free stream temperature.
The non-uniform heat source/sink is given as

q′′′ =
κuw
xrν

[A? (Tw − T∞) f ′ +B? (T − T∞)] (8)
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where A? and B? connote the space dependent heat source/sink and B? the temperature dependent heat
source/sink.
The suction/injection term in equation (5) is symbolized with vw, it is assumed that vw = V0x

(r−1)/2,
A? = α1x

r−1 and B? = β1x
r−1 where V0, α1 and β1 are constants (see Das al., 2015 and references there-in).

Also, h is a surface boundary parameter with 0 ≤ h ≤ 1. The case when h = 0 corresponds to N = 0,
this represents a strong concentration such that the micro-particles close to the wall are unable to rotate.
The situation of h = 1/2 shows that there weak concentration of micro-particles and also indicating the
vanishing of anti-symmetric part of the stress tensor while h = 1 models turbulent boundary layer situations
(see Peddieson, 1972; Ahmadi, 1976; Jena and Mathur, 1981).
The temperature-dependent viscosity µ(T ) can be expressed as (see Das, 2012; Akinbobola & Okoya, 2015
and the cited references).

1

µ
=

1

µ∞
[1 + β (T − T∞)] , (9)

Equation (9) also implies
1

µ
= H (T − Tr) , (10)

here, H = β
µ∞

and Tr = T∞− 1
β are constants, their values are determined by the reference state of the fluid

whereas β describes the thermal nature of the micropolar fluid. Other models of temperature-dependent
viscosity includes the Vogel’s and the Reynolds viscosity model, however, the model in equation (9) is more
appropriate for a broad range of temperature than the other models (Knezevic and Savic, 2006; Keimanesh
and Aghanajafi, 2017).

Also, Chiam (1996, 1998) reported that for liquid metals, the variation of the thermal conductivity κ with
temperature can be expressed in an approximately linear form having the range of 0oF to 4000F . Obviously,
this relationship can take the linear form described in equation (10) as

κ (Tw − T∞) = κ∞ [(Tw − T∞) + δ (T − T∞)] . (11)

Here, κ∞ represents the free stream thermal conductivity, δ denotes variable thermal conductivity parameter.
Meanwhile, Mahmoud (2012) reported that the range of values of 0 ≤ ε ≤ 6 is applicable for air with
0 ≤ ε ≤ 0.12 for water while −0.1 ≤ ε ≤ 0.12 for lubrication oils.
By means of equation (12) the modelled equations are transmuted from nonlinear partial differential equations
to nonlinear coupled ordinary differential equations η (see Hayat et al., 2008; Salem, 2013)
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With the use of equation (12) in equations (10-11), equation (9) becomes
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while equation (10) implies
κ = κ∞ (1 + δθ) ., (14)

(see Oahimire & Olajuwon, 2013), meanwhile, the application of the stream function given as
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, (15)

enhances the satisfaction of the continuity equation (1). Then on substituting equation (12) into equations
(2-5) and taking cognizance of equations (6-7) and (13-14) the governing equations result to the underlisted
non-linear ordinary differential equations(
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For a realistic result of the energy equation (18), it is required that the Prandtl number vary across the
boundary layer since the definition of the Prandtl number Pr involves both viscosity µ, specific heat capacity
and thermal conductivity κ, that is, Pr =

µcp
κ . Hence, by implication of the combined variable viscosity µ

as well as thermal conductivity κ, the variable Prandtl number is incorporated (see Rahman et al., 2010).
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The transformed boundary conditions are:

η = 0 : f ′ = 1, f = fw, g = −hf ′′, θ = 1,

η −→∞ : f ′ = 0, g −→ 0, θ −→ 0.
(21)

The nomenclature of the parameters included in equations (16-21) are given as:
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In the above equations (16-20), the differentiation is carried out with respect to η. Similarly, K is the mi-
cropolar material parameter, the suction/injection parameter is represented by fw, where fw > 0 indicates
suction and fw < 0 corresponds to injection while fw = 0 depicts an impermeable sheet and M is the
Magnetic field parameter. In addition, Pr symbolizes the Prandtl number where Pr∞ is the ambient Prandtl
number, the space and heat dependent heat source/sink are α? and β? respectively, δ symbolizes thermal
conductivity variation parameter while Gr is the Grashof number and the Eckert number is represented by
Ec, θr stands for the viscosity variation parameter which is dependent on the temperature difference along-
side with the viscosity/temperature nature of the fluid.

3 Method of Solution

To get solutions to the highly nonlinear equations (16-18, 20) subject to conditions (21). A computer algebra
symbolic Maple 2016 package is employed. The numerical procedure follows Runge-Kutta techniques of
fourth order incorporated with a shooting scheme. To check the validity of the the numerical code used, we
have compared our results in the limiting condition with that of Cortell (2007) and Hayat (2008) as shown
in Table 1 relating to the skin friction coefficient Cfx . Besides, we also crosschecked the values of the Nusselt
number Nux in the limiting case with those authors used in Table 1, these are recorded in Table 2.

4 Analysis of Results and Discussion

This section includes validation of results, presentation of results in tabular and graphical forms and then
the discussion of results.
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4.1 Validation of Results

Tables 1 and 2 portray the validation of the present results with the related articles in the literature in
some limiting conditions. It is clearly shown that the present results have an excellent relationship with the
previously published works as depicted from the Tables.

Table 1: Comparison of values of Cfx with variations in r

r Cortell Hayat Present
00 0.627547 0.627555 0.627563
0.2 0.766758 0.766837 0.766846
0.5 0.889477 0.889544 0.889552
1.0 1.000000 1.000000 1.000008
1.5 1.061587 1.061601 1.061609
3.0 1.148588 1.148593 1.148601
7.0 1.216847 1.216850 1.216858
10.0 1.234875 1.234875 1.234882
20.0 1.257418 1.257424 1.257431
100.0 1.276768 1.276774 1.276781

Table 2: Comparison of the values of Nux for Newtonian fluids when
Ec = K = γ = j = Gr = Nr = ε = 0, θr →∞ with variations in r

Ec r Cortell Hayat Present Cortell Hayat Present
Pr = 1 Pr = 1 Pr = 1 Pr = 5 Pr = 5 Pr = 5

00 0.2 0.610262 0.610202 0.610216 1.607175 1.607925 1.607784
0.5 0.595277 0.595201 0.595224 1.586744 1.586833 1.586779
1.5 0.574537 0.574730 0.574771 1.557463 1.557672 1.557692
3.0 0.564472 0.564462 0.564717 1.542337 1.542145 1.543178
10.0 0.554960 0.554878 0.554951 1.528573 1.528857 1.528926

4.2 Tabular Presentation of Results

The reaction of various embedded parameters as regard the skin friction coefficient Cfx and Nusselt number
Nux afre shown in Tables 3-7.

Table 3: Values of Cfx and Nux with variations in r for the case of suction fw > 0 and injection fw < 0
V EC CEC V EC CEC V EC CEC V EC CEC

r −f(0)′′ −f(0)′′ −θ′(0) −θ′(0) −f(0)′′ −f(0)′′ −θ′(0) −θ′(0)
fw = 0.1 fw = −0.1

0.2 -0.26179 -0.25479 0.37217 0.35953 -0.28545 -0.58661 0.40307 0.51601
0.6 0.07735 0.11893 0.13733 0.14839 0.04795 0.08125 0.17869 0.18980
1.2 0.19283 0.23752 0.05098 0.06657 0.16188 0.19986 0.09595 0.11208
1.4 0.25058 0.29526 0.00659 0.02351 0.21899 0.25777 0.05328 0.07098
1.6 0.29769 0.34158 -0.03016 -0.01266 0.26567 0.30432 0.01785 0.03632

Table 4: Values of Cfx and Nux with variations in K for the case of suction fw > 0 and injection fw < 0
V EC CEC V EC CEC V EC CEC V EC CEC

K −f ′′(0) −f ′′(0) −θ′(0) −θ′(0) −f ′′(0) −f ′′(0) −θ′(0) −θ′(0)
fw = 0.1 fw = −0.1

0.0 0.20869 0.25251 0.02511 0.04960 0.17388 0.21002 0.07277 0.09634
1.0 0.20186 0.24691 0.03954 0.05878 0.16866 0.20653 0.08577 0.10492
3.0 0.18527 0.22919 0.06112 0.07409 0.15634 0.19397 0.10492 0.11887
5.0 0.17343 0.21524 0.07842 0.08834 0.14779 0.18407 0.12015 0.13157
7.0 0.16458 0.20403 0.09257 0.10127 0.14148 0.17605 0.13256 0.14294

Table 5: Values of Cfx and Nux with variations in θr for the case of suction fw > 0 and injection fw < 0
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V EC CEC V EC CEC V EC CEC V EC CEC
θr −f ′′(0) −f ′′(0) θ(0) θ(0) −f ′′ −f ′′(0) θ(0) θ(0)

fw = 0.1 fw = −0.1
2.5 0.19324 0.23874 0.09386 0.11238 0.15827 0.19597 0.14474 0.16381
3.5 0.19084 0.23646 0.14399 0.16599 0.15165 0.18832 0.20210 0.22473
5.0 0.18776 0.23311 0.18235 0.20706 0.14557 0.18117 0.24624 0.27165
7.0 0.18530 0.23035 0.20828 0.23484 0.14117 0.17595 0.27618 0.30349
10.0 0.18328 0.22806 0.22790 0.25587 0.13773 0.17186 0.29889 0.32767

Table 6: Values of Cfx and Nux with variations in ϕ for the case of suction fw > 0 and injection fw < 0
V EC CEC V EC CEC V EC CEC V EC CEC

ϕ f ′′(0) f ′′(0) −θ′(0) −θ′(0) f ′′(0) f ′′(0) −θ′(0) −θ′(0)
fw = 0.1 fw = −0.1

0◦ 0.10462 0.14481 0.16572 0.18267 0.06283 0.09302 0.22840 0.24557
30◦ 0.22380 0.27129 0.19086 0.21952 0.18143 0.21928 0.25543 0.28504
45◦ 0.28938 0.34058 0.20882 0.24589 0.24666 0.28844 0.27492 0.31355
60◦ 0.42836 0.48647 0.26151 0.32539 0.38483 0.43402 0.33300 0.40073

Table 7: Values of Cfx and Nux with variations in θr and h for the case of suction fw > 0 and injection
fw < 0

V EC CEC V EC CEC V EC CEC V EC CEC
−f ′′ −f ′′ −θ′(0) −θ′(0) −f ′′ −f ′′ −θ′(0) −θ′(0)

θr h fw = 0.1 fw = −0.1
2.5 0.2 0.19324 0.23874 0.09386 0.11238 0.15827 0.19597 0.14474 0.16381
7.0 0.2 0.18530 0.23035 0.20828 0.23484 0.14117 0.17595 0.27618 0.30349
10.0 0.2 0.18328 0.22806 0.22790 0.25587 0.13773 0.17186 0.29889 0.32767
0.5 0.0 0.22655 0.27859 0.02324 0.04463 0.18683 0.22973 0.07881 0.10063
0.5 0.3 0.16388 0.20481 0.27978 0.30750 0.14557 0.18117 0.24624 0.27165
0.5 0.6 0.05500 0.07371 0.73525 0.78544 0.11966 0.15038 0.35144 0.38006

4.3 Graphs and Discussion

Fig.2. Velocity profiles for r Fig.3 Temp. profiles for r

Both velocity and temperature profiles decrease with a rise in r for fw > 0 and fw < 0. The boundary layer
structure is thinner in case of suction than injection in both profiles.
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Fig. 4. Velocity profiles for K Fig. 5 Temp. profiles for K

In figures 4 and 5. It is noticed that a rise in the magnitude of the material parameter K boost both velocity
and temperature fields

Fig.6. Vel.profiles for θr > 0 Fig.7 Temp.profiles for θr > 0

Figs. 6 and 7 show the effects of θr > 0 on the velocity distribution and temperature profiles. The graph in
figure 6 implies a decrease in the velocity while the temperature advances with a rise in (θr). As the viscosity
increase, the fluid motion falls while the thermal field is enhanced.

As (θr ⇒ 0) the effect becomes negligible.

Fig.8 Velocity profiles for θr < 0 Fig.9 Temp.profiles for θr < 0

The graph of the velocity function against η for various values of θr < 0 is displayed in figure 8. Here, the
velocity as well as temperature increases for θr < 0.
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Fig.10. Microrotation profiles for K Fig.11. Temp.profiles for α? = β?

Figures 10 and 11 show the effects K and α? = β? on the microrotation and temperature profiles respectively.
Increase in the material term K enhances microrotation profiles while the thermal boundary layer thickens
with rising values of α? = β?.

Fig.12. Velocity profiles for δ Fig.13 Temperature profiles for δ

Figures 12 and illustrate the effects of δ on the velocity and temperature profiles. It is clearly shown that
both boundary layers grow with higher values of δ

Fig.14. Velocity profiles for n Fig.15 Temp.profiles for n

Figs. 14 and 15 show the effects of n on velocity and temperature profiles. A rise in n dampens both velocity
and temperature. The boundary layer thickness thins out for suction in both profiles.

5 Conclusion

This current work studied heat transfer analysis of magneto-micropolar fluid flow passing an inclined nonlinear
stretching sheet with variable viscosity, thermal conductivity and electrical conductivity. The influence Joule
heating as well as nonuniform heat source/sink, viscous dissipation are also investigated on the thermal
field. The controlling modelled equations are converted into dimensionless form by means of similarity
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transformation. Thereafter, a numerical approach is adopted to solve the equations. The results in the
limiting case compared favourably with the earlier published data in the literature. The following points
have been observed from the study:

• VEC offers a better reduction in the viscous shear stress (Cfx) than the CEC.

• the rate of heat transfer across the surface (Nux) is higher for the CEC.

• The (Cfx) is found to reduce as K, θr, δ increases but rises with ϕ and r

• The (Nux) appreciates with K, θr, δ and ϕ but falls for r.

• Injection reduces the (Cfx) while enhancing the (Nux).

• Velocity as well as temperature decreases for (θr > 0).

• Velocity as well as temperature increases for θr < 0.

• Both velocity & temp. profiles decrease with a rise in r.

• The BLT is thinner in case of suction than injection in both profiles.
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