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Abstract
The investigation of chemically reacting and electrically conducting micropolar fluid is numer-
ically analyzed in this study. The flow is assumed to be two-dimensional, steady, incompress-
ible and viscous along a nonlinear permeable stretching sheet in a saturated porous medium.
The modelled equations are translated from partial to ordinary differential equations via a
similarity conversion procedure and then integrated numerically by means of shooting tech-
nique in company of fourth order Runge-Kutta scheme. The numerical outcomes of the
simulation are graphically displayed and the impact of the emerging controlling parameters
on the fields of flow, temperature and concentration as well as quantities of engineering in-
terest are discussed. A comparison of the present numerical results with existing data in
literature as special cases depicts an excellent agreement. The results indicate that the mass
transfer at the surface is boosted with growing magnitudes of first order chemical reaction
parameter as the heat transfer also advances with a rise in nonlinear stretching parameter.
Keywords: Chemical reaction; micropolar fluid; nonlinear stretching sheet; porous medium

1 Introduction

The investigation of boundary layer flow and heat transfer prompted by stretching sheet
has attracted researchers since initiated by Sakiadis (1961). Crane (1970) further worked on
such problem owing to its wide industrial and engineering applications including the extru-
sion of plastic sheet, paper and textile production, hot rolling, wire drawing, etc. After the
work of Crane (1970), quite a number of authors such as Gupta and Gupta (1977); Vajravelu
and Nayfey (1993); Takhar et al. (1998); Chen and Char (1988); Mahmoud (2007); Kumar
(2009); Fatunmbi and Fenuga (2017), etc have studied this problem with various parameters,
geometries and methods. For the case of nonlinearly stretching sheet which often occur in
practical situations,researchers such as Vajravelu (2001); Cortell (2007, 2008); Hayat (2008);
Hsiao (2010); Alinejad and Samarbakhsk (2012); Ahmad et al. (2013); Rawat et al. (2016);
Waqas et al. (2018); Fatunmbi et al. (2019), etc have reported such problem.
Eringen (1966) introduced the theory of micropolar which has the capacity to model and sim-
ulate complex and complicated fluid flow suc as liquid crystal, fluid with additives, animal
blood etc. micropolar fluid is a non-Newtonian fluid with microstructures and rigid particles.
They are significant in applications in diverse fields of engineering, science and technology
such as in bio-medical engineering especially fluid flow in brains and blood flows also in met-
allurgical engineering and chemical engineering (Lukaszewicz, 1999; Reena and Rana, 2009;
Rahman, 2009). Various scholars have examined different parameters on boundary layer flow
with the use of micropolar fluid (see Kumar, 2009; Qasim ıet al., 2013; Mishra et al., 2016;
Mabood et al., 2016; Fatunmbi and Adeniyan, 2018, Salawu and Fatunmbi, 2018).
However, these mentioned researches were conducted on the assumption that the no-slip
boundary condition holds whereas in some practical situations, it has been found that this
assumption becomes invalid. Hence, the need to investigate the influence of slip on both the
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flow and heat transfer of fluids. Such study particularly important when studying particulate
fluids such as emulsions and polymer solutions. Slip flow has been found to reduce flow resis-
tance in micro-channels which is also connected with a rise in porous medium. It is also help in
heat transfer processes including cooling of electronic devices, fuel cells and heat exchangers.
Researchers such as Wang (2002); Hayat et al. (2010); Laxami and Shankar (2016); Awais
(2016); Shu et al. (2017); Fatunmbi and Adeniyan (2018); Kumar et al. (2018); Mabood and
Shateyi (2019). Meanwhile, these researches were conducted on a linearly stretching sheet
ignoring cases when the stretching sheet is not linear.
In view of this, the objective of this study is to investigate hydromagnetic flow and heat
transfer in micropolar fluid passing a nonlinear stretching sheet under the influence of ther-
mal radiation, viscous dissipation, non-uniform heat source/sink, velocity and thermal slips.
The wall heating condition has been assumed to be prescribed surface temperature, the gov-
erning equations are translated from partial to ordinary differential equations using similarity
conversion approach and then solved via shooting and Runge-Kutta techniques.

2 Problem Formulation

Consider a two-dimensional, steady fluid flow over a non-linearly stretching permeable
sheet in a saturated non-Darcian porous medium. The working fluid is an electrically con-
ducting, incompressible, viscous micropolar fluid. A non-uniform magnetic field of strength
B(x) = B0x

(r−1)/2 acts normal to the flow direction in which (x, y) describes the stretching
and the transverse coordinates with corresponding velocity component (u, v) as depicted in
Fig.1. The velocity of the stretching sheet in the x direction is u which varies in a nonlinear
manner such that uw = bxk with b > 0 being a constant and k is the power law index and
us is the slip velocity, the surface temperature is taken as and surface concentration is taken
as Cw = C∞ + D1x

r1 with r and r1 representing the surface temperature and concentration
parameters respectively.

Fig.1. Flow Configuration and Coordinate System

With the above listed assumptions as well as the boundary layer approximations, the modelled
governing boundary layer equations are:
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The wall conditions are:

u = uw = bxk, v = Vw, B = −r∂u
∂y
, T = Tw = T∞ +D1

(x
l

)α
,

C = Cw = C∞ +D2

(x
l

)β
at y = 0,

u→ 0, B → 0, T → T∞, T → T∞ as y.

(6)

Following previous authors, the variation of the viscosity µ(T ) with temperature is assumed
to be inverse form expressed as is expressed as see (Kumari, 2001; Chin et al.,, 2007; Makinde,
2011).

1
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Table 1 shows the nomenclature of the symbols used in Eqs. (1-6).

Table 1: Nomenclature of the symbols in Eqs. (1-6)
Symbols Nomenclature Symbols Nomenclature

µ dynamic viscosity ρ density
κ vortex viscosity ν kinematic viscosity
σ electrical conductivity T temperature
α surface Temp. Parameter C concentration
β surface Conc. Parameter Dm mass diffusivity
k∗ mean absorption coefficient σ? Stefan-Boltzmann constant
u velocity component in x r surface parameter
v velocity component in y A&D&G constants
γ spin gradient viscosity Vw suction/injection term
ζ thermal conductivity kr rate of chemical reaction
N fluid thermal nature Tr constant

The governing Eqs. (1-6) are converted from to ODEs using Eq. (8) (see Salem, 2013; Hayat,
2008)
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Using Eq. (8) in Eqs. (2)-(5) result to:(
Qr

Qr − θ
+ L

)
f ′′′+ff ′′+Lh′− Qr

(Qr − θ)2
θ′f ′′−

(
2k

k + 1

)
f ′2−

(
2

k + 1

)[
M +Da

(
Qr

Qr − θ
+ L

)]
f ′ = 0,

(10)

3



(1 + L/2)h′′ + fh′ −
(

3k − 1

k + 1

)
f ′h− L (2h+ f ′′)

(
2

k + 1

)
= 0, (11)

θ′′ + Prfθ′ −
(

2α

k + 1

)
Prf ′θ +

(
Qr

Qr − θ
+ L

)
PrEcx2k−rf ′′2+(

2

k + 1

)
MPrEcx2k−rf ′2 = 0,

(12)

On setting α = 2k, Eq. (10) becomes
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and the boundary conditions translate to

η = 0 : f ′ = 1, f = Fw, h = −rf ′′, θ = 1, φ = 1

η →∞ : f ′ → 0 h→ 0, θ → 0, φ→ 0.
(15)

Where L = κ
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is the micropolar material parameter, Fw = −
√
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is the Eckert number, Sc is the Schmidt number, K is the chemical reaction

parameter.
For the current work the quantities of engineering interest are the skin friction coefficient
Cfx, Nusselt number Nux and Sherwood number Shx defined respectively as.
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where τw is surface shear stress, qw, qm is surface heat and mass flux in that order. Using
equations (8) and (16), the dimensionless skin friction coefficient is
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2
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the Nusselt and Sherwood numbers respectively translate to
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3 Validation of Results

Owing to the highly nonlinearity of the governing equations, the present study has been
solved numerically by means of shooting technique in company of Runge-kutta order four.
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The validity of the numerical code has been checked by direct comparison of the computa-
tional values gotten in this study with earlier reported related studies in literature in the
limiting cases. Table 1 shows the computed values of the skin friction coefficient Cfx as
compared with those of Mabood & Das (2016) for variation in M via implicit finite difference
method with quasilinearisation technique when n = 1, K = fw = Ec = Pr = L = Q = 0.
Also, for variation in the non-linear stretching parameter n comparison of Cfx values has been
made with those reported by Hayat et al. (2008) via HAM when K = L = Q = M = fw = 0.

Table 1: Computational values of Cfx as compared with published works
M Mabood & Das (2016) Present n Hayat et al. (2008) Present
0.0 1.000008 1.000008 0.0 0.627555 0.627555
1.0 1.4142135 1.4142135 0.2 0.766837 0.766837
5.0 2.4494897 2.4494897 0.5 0.889544 0.889544
10.0 3.3166247 3.3166247 1.0 1.000000 1.000008
50.0 7.1414284 7.1414284 1.5 1.061601 1.061601
100.0 10.049875 10.049875 3.0 1.148593 1.148593
500.0 22.383029 22.383029 7.0 1.216850 1.216850

10.0 1.234875 1.234875
20.0 1.257424 1.257424
100.0 1.276774 1.276774

In addition, we have also cross-checked the values of the Nusselt number obtained in this
study with those reported by Ali (1994) and Mabood & Shateyi (2019) for variation in
the Prandtl number Pr for isothermal situation, linearly stretching sheet n = 1 and when
M = fw = Ec = α = β = Q = K = 0. These are recorded in Table 2 and shows that the
results gotten from the current work compare favourably with the published articles in the
limiting cases.

Table 2: Computational values of Nux for variation in Pr
Pr Ali (1994) Mabood & Shateyi (2019) Present
0.72 0.8058 0.8088 0.80883
1.0 0.9691 1.0000 1.00000
3.0 1.9144 1.9237 1.92369
10.0 3.7006 3.7207 3.72067

4 Results Analysis and Discussion

The reaction of the dimensionless velocity, microrotation, temperature to variation in the
physical parameters have been analyzed through various graphs. Also, the impact of some
of these parameters on the skin friction coefficient Cfx and Nusselt number Nux have been
found. The default values used for the computational analysis have been carefully chosen
from existing works in literature that are found suitable. These values are K = s = 0.5, Ec =
0.1, n = 0.5, Sc = 0.22, fw = 0.3,M = 0.5, P r = 0.71, α = L = Q = 0.3, β = 0.1. Unless
otherwise stated on the graphs.
The plot in Fig. 2 shows that the micropolar fluid represented by K has the tendency to boost
the fluid velocity whereas the effect of magnetic field parameter is to lower the fluid motion
due the introduction of Lorentz force. The exact of opposite of the trend in Fig. 2 happens
in Fig. 3 where as a result of the presence of micro particles, the microrotation field reduces.
However, the magnetic field parameter M acts to favour the growth of the microrotation field.
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Fig. 2 Impact of K&M on velocity field Fig. 3 Variation of K&M on microrotation field

The plot representing the velocity field against η as the velocity slip parameter L varies is
depicted in Fig. 4. Observation shows that the impact of L is to decrease the momentum
boundary layer which in turn act to reduce the locomotion of the fluid. A situation of no-slip
L = 0 offers higher fluid flow than the presence of slip condition. Similarly, the variation
of the temperature profiles with thermal slip term also informs that the thermal boundary
layer thickness thins out as Q rises in magnitude. In view of this, there is a low rate of heat
transfer from the nonlinear stretching sheet to the fluid, an observation which agrees well
with the report Ramya et al. (2018).

Fig. 4 Response of velocity profiles with L Fig. 5 Reaction of temperature field with Q

Fig. 6-7 depict the influence of the nonlinear stretching parameter n on the velocity and
thermal fields respectively in the presence and absence of of the magnetic field parameter.
Clearly, the fluid flow declines with an increase in n in the absence of M i.e. M = 0. However,
with the introduction of M , the motion of the fluid rises as n is increasing. In Fig. 7, the
temperature declines for both situations, however, the temperature is higher in the presence
of M , i.e. M = 0.5.

6



Fig. 6 Effect of n & M on velocity Fig. 7 Effect of n & M on temperature field

The sketch in Fig. 8 describes the effects of the Prandtl number and space-dependent heat
source parameter α on the thermal field. It is revealed that the thermal boundary layer
declines with rising values of Pr, hence, the drop in the surface temperature. Contrarily,
the imposition of α provides more heating in the system thereby enhancing the tempera-
ture profiles. In the same vein, the thermal field is enhanced with the imposition of the
temperature-dependent heat source parameter β as depicted in Fig. 9.

Fig. 8 Variation of temperature with Pr & α Fig. 9 Display of β on temperature field

Fig. 10 shows that for any value of the magnetic field term, the micropolar fluid reduces the
skin friction coefficient Cfx whereas an increase in M boosts Cfx. On the other hand, an
increase in M turns to lower the rate of heat transfer at the surface as seen in Fig. 11 while
the impact of micropolar term k is to facilitate the Nusselt number.
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Fig. 10 Variation of Cfx with M&K Fig. 11 Response of Nux with varying M&K

Fig. 12 is graph of variation of the Nusselt number with the Prandtl number in the presence
of viscous dissipation term known as Eckert number Ec. The heat transfer at the sheet
surface declines with a rise in Ec. However for a fixed value of Ec, an increase in Pr boosts
the transfer of heat. The reaction of Nusselt number with changes that occur in Pr in the
presence of nonlinear stretching parameter n and for the presence and absence of heat source
parameters α/β are plotted in Fig. 13. The transfer of heat is facilitated with rising values
of n for both presence and absence of heat source parameter, this response is in line with the
report of Ahmad et al. (2013). With the stretching of the sheet, the values of the Nusselt
number rises for a particular value on n. However, the value of Nusselt number Nux is higher
in the absence of heat source parameter α/β.

Fig. 12 Impact of Ec&Pr on Nux Fig. 13 Reaction of n&α/β on Nux

5 Conclusion

The current study has addressed hydromagnetic flow of micropolar fluid along a nonlinear
stretching sheet under the influence of nonuniform heat source/sink, viscous dissipation,
velocity and temperature slip conditions. The dimensionless equations of the flow and heat
transfer have been solve numerically using the shooting techniques and Runge-Kutta scheme.
Also, validation of the results obtained was carried out with existing data in literature in the
limiting cases and found to be in good relationship. Moreso, the effects of main controlling
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parameters have been analyzed by means of various graphs. From this study, the following
points have been noticed
• The transfer of heat at the sheet surface is boosted with increasing values of the nonlin-

ear stretching parameter n, Prandtl number Pr and micropolar parameter K while it
declines with rising values of the magnetic field M and Eckert number Ec parameters.

• The fluid motion is enhanced in the presence of micropolar parameter K whereas the
presence of the magnetic field parameter M inhibits the fluid flow.

• The hydrodynamic boundary layer becomes thin in the presence of slip parameter L as
the the thermal boundary layer also falls in the presence of temperature slip parameter
Q. Hence both velocity and temperature profiles depreciate with a rise in the slip
parameters.

• There is a drop in the surface temperature with rising values of the nonlinear stretching
parameter n, Prandtl number Pr whereas the imposition of heat source enhances the
temperature field.
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