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Abstract 

The optimal use of energy is the critical objective in the building of thermal devices which are 

useful both in engineering and industrial operations. To achieve this objective, considerable 

attention should be paid to minimization of entropy production in the processes. In view of this,   

entropy generation in thermal boundary layer fluid flow of an electrically conducting micropolar 

fluid over a convectively heated nonlinear stretching sheet being influenced by viscous dissipation 

and thermal radiation has been analyzed in this study. The formulated governing equations of the 

flow, heat transfer and entropy generation are converted to ordinary differential equations by 

similarity transformation procedures. Thereafter, the resulting equations are computationally 

integrated by means of  shooting techniques accompanied by fourth order Runge-Kutta algorithms 

entrenched in a symbolic software Maple 2016. The imapct of various controlling physical  

parameters on the fluid flow, temperature distribution, entropy generation, Bejan number and other 

quatities of engineering interest are discussed through graphs and tables. The facts from the study 

show that heat transfer irreversibility is stronger than that of viscous dissipation and Joule heating 

as the radiation parameter rises while the nonlinear stretching parameter influence is to diminish 

the transfer of heat.. 

Keywords: Bounadary layer; convective heating; entropy production; micropolar fluid; nonlinear 

stretching sheet 

 

1.0  Introduction 

The power and benefits of non-Newtonian fluids in industrial and engineering processes have 

motivated quite a number of researchers and scientists in the recent times to pay more attention to 

its study. Different from Newtonian fluids, the viscosity of non-Newtonian fluids is dependent on 

the shear rate or shear rate history. Examples of such fluids are ketchup, butter, cosmetics, polymer 

solutions, blood, colloids, mud flows and gels. The applications of such fluids are germane in 

nature and manufacturing operations which include; crude oil extraction, food and polymer 

processing, chemical processing, blood flow, polymer extrusion, bio-mechanic engineering, etc 

(Panigrahi, Reza and Mishra, 2015; Anuradha and Punithavalli, 2019). 

However, owing to diverse fluid propertities in nature, there exists no single constitutive model 

that can capture effectively the non-Newtonian fluids characteristics. In view of this, different non-

Newtonian fluid concept have been developed based on different physical characteristics. Such 

models include the micropolar fluid, Maxwell fluid, Johnson-Segalman fluid, Casson fluid, Jeffery 

fluid, etc (Chen, Liang, and Lee, 2011).  The micropolar fluid has become popular and interesting 

area of research among other non-Newtonian fluids due to its ability to describe effectively fluids 

with microstructure. Erigen (1966, 1972) formulated the theory of micropolar fluid and thermal-

micropolar fluid respectively.   

The  micropolar fluid describes fluids which manifest some microscopic influence emanating from 

the local structure and micromotion of its particles. Physically, they consist of rigid, spherical or 



bar-like particles suspended in a viscous medium (Lukaszewicz, 1999). Such fluids include the 

polymeric and fluid suspensions, animal blood, liquid crystals, colloidal fluids, etc (Hayat, Mustafa 

and Obaidat, 2011). They offered mathematical framework for analyzing various complex and 

complicated fluids including polymeric, colloidal fluids and suspension solutions which cannot be 

described effectively by the Navier-Sotkes model. Besides, there are  huge scientific and industrial 

usage of such fluids such as in extrusion of polymer fluids, the cooling of metallic plate in water 

bath, synovial lubrication, arterial blood flows, sediment transport in rivers (Rahman, 2009; Reena 

and Rana, 2009).  

The investigation of boundary layer flow passing stretching sheet provide significant applications 

in manufacturing and engineering works such as in textile and paper production, extrusion of 

plastic sheet and metal, drawi ng of copper wires, glass blowing, drawing of plastic films. This 

kind of study was initiated by Sakiadis (1961) and has since been explored by various scholars 

(see Crane, 1970; Fatunmbi and Adeniyan, 2018; Makinde, et al., 2018). Practically, the sheet 

could be stretched nonlinearly as reported by Gupta and Gupta (1977). This kind of study has been 

addressed by Vajravelu (2001); Cortell (2008); Hayat (2008); Panigrahi, Reza and Mishra, (2015), 

Waqas et al., (2016) with various parameters of interest, different methods and wall conditions. In 

all these studies however, only Newtonian fluids are applied while non-Newtonian fluids 

especially the micropolar fluid have been ignored inspite of its usefulness.  

Meanwhile, the boundary layer flow and heat transfer charateristics over a stretching sheet with 

the use of micropolar fluids  have been reported by various researchers (see Chaudhary and Jha, 

2008; Fatunmbi and Fenuga, 2017; Kamran, 2018; Arifuzzaman  et al., 2018) while checking the 

impact of  various parameters, geometries under different condtions and assumptions. Howbeit, 

these studies have only been devoted to thermodynamics first law only. Kobo and Makinde (2010) 

however reported that studies conducted with thermodynamics second law corresponding to 

entropy generation are dependable than those the first law. Entropy generation is a means of 

determining the irreversibility that occur in a themodynamical system in order to upgrade such 

system ( Makinde, 2012). 

The study of  entropy generation has become consequential because in many engineering as well 

as industrial works, the generation of entropy leads to the destruction of available energy in the 

sysytem. The performance of thermal machines such as air conditioners, power plants, heat pumps, 

refrigerator, etc can be determined by the rate of entropy generation. Hence, it becomes necessary 

to investigate such phenomenon through the use of second law of thermodynamics with a view to 

optimize the energy in the system for effective performance. On the ground of crucial relevance 

of such studies in engineering and industrial works, quite a number of reseachers (see Bejan, 1982, 

1996; Rashidi and Abbas, 2017; Ishaq et al., 2018; Salawu et al., 2019; Salawu and Fatunmbi, 

2017; Srinivasacharya and Bindu, 2017; Makinde and Eegunjobi, 2018; El-Aziz, and Saleem, 

2019) have addressed such problem  on both Newtonian and non-Newtonian fluids. None of these 

studies however has been conducted with the use of micropolar fluid over a convectively heated 

nonlinear stretching sheet.  

Hence, the focus of this study is to address numerically entropy generation in hydromagnetic 

thermal boundary layer fluid flow of micropolar type along a nonlinear stretching sheet with 

convective wall condition. The impact of thermal radiation, varying heat source and viscous 

dissipation are also checked owing to their usefulness in engineering and industrial processes 

including gas turbines, astrophysical flows, power plants, etc 

 

 



2.0  Mathematical Development of the Model 

For the formulation of the model and to develop the governing equations, it is assumed that the 

flow is steady, two-dimensional, incompressible, viscous with Cartesian coordinate (𝑥, 𝑦, 𝑧) 

having corresponding velocity components (𝑢, 𝑣, 0). The flow is also assumed to be in 𝑥 direction 

while 𝑦 axis is normal to it. The working fluid is taken to be electrically conducting, radiating and 

dissipative non-Newtonian micropolar fluid which flow over a convectively heated impermeable 

nonlinear stretching sheet  with velocity 𝑢 = 𝑈0𝑥𝑝 where 𝑈0 is a positive constant and 𝑝 is the 

power law stretching parameter. A transverse magnetic field of strength 𝐵0 is applied normal to 

the flow direction as depicted in Fig. 1 while the induced magnetic field and electric field have 

been neglected. The  fluid flow properties are assumed to be isotropic and constant and the sheet 

temperature  is upheld by a convective heating process from a hot fluid of a temperature 𝑇𝑓. The 

impact of Joule heating as well as viscous dissipation and thermal radiation are also checked on 

the model.  

 
 

Fig. 1.The Sketch of the Physical Model  

 In view of the assumptions stated above and with the use of boundary layer approximations, the 

governing equations are 
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The non-uniform heat source/sink 𝑝′′′ in Eq. (4) is expressed as  

 𝑝′′′ =
𝑘𝑢𝑤

𝑥𝑝𝜈
(𝑇𝑓 − 𝑇∞)[𝐴1𝑓′ + A2θ], (5) 



 Where A1 = 𝛼𝑥𝑝−1 and A2 = 𝛽⋆𝑥𝑝−1 are space and heat dependent source/sink respectively such 

that  A1 > 0,  A2 > 0 relates to heat source while  A1 < 0, A2 < 0 implies heat sink. 

 The relevant boundary conditions for the governing equations are: 

 
𝑢 = 𝑢𝑤 = 𝑈0𝑥𝑝, 𝑣 = 0, 𝐻 = 0, −

𝑘𝜕𝑇

𝜕𝑦
= hf(𝑇𝑓 + 𝑇∞) 𝑎𝑡 𝑦 = 0,

𝑢 → 0, 𝐻 → 0, 𝑇 → 𝑇∞ 𝑎𝑠 𝑦 → ∞.
 (6) 

 

The various symbols used in the governing equatuons are summarised in Table 1 with their 

nonmenclature. 

Table 1:  Symbols and their nonmenclature 

 

Symbols Nomenclature 

 
Symbols Nomenclature 

 

𝑢 Velocity in 𝑥 direction 𝑇 Temperature 

𝑣 Velocity in 𝑦 direction ℎ𝑓 Coefficient of heat transfer 

𝜌 Fluid density 𝑇𝑓 Surface sheet temperature 

𝜇 Newtonian viscosity 𝑢𝑤 Velocity at the sheet 

𝑟 Vortex viscosity 𝑈0 Nonlinear stretching velocity 

𝜎0 Electrical conductivity 𝑗 Micro inertial density 

𝑐𝑝 Specific heat capacity 𝛾 Spin gradent viscosity 

𝑘 Thermal conductivity 𝑇∞ Temperature at free stream 

𝜎⋆ Stefan-Boltzmann constant 𝑘⋆ Mean absorption coefficient 

𝑝′′′ Non-uniform heat source 𝐻 Microrotation component 

 

2.1  The Model Transformation 

To simplify further the governing equations, we applied similarity transformation variables (see 

Salem, 2013) in Eq. (7) such that the continuity Eq. (1) is satisfied with the use of the stream 

function 𝑢 and 𝑣 defined in (7) 
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 With the substitution of Eq. (7) into Eqs. (2-4) aand taking cognizance of Eq. (5), the Eqs. 

describing the flow, microrotation and energy in ordinary differential forms are listed below 
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 Tthe boundary conditions (6) also translate to 



 
𝑓′(0) = 1, 𝑓(0) = 0, 𝑔(0) = 0, 𝜃′(0) = ζ(θ(0) − 1),

𝑓′(∞) = 0, 𝑔(∞) = 0, 𝜃(∞) = 0.
 (11) 
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For the engineering community, the relevant quantities of concern are the skin friction coefficient 

and the Nusselt number which are written respectively in Eq. (13)   
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 where 𝜏𝑤 and 𝑞𝑤 are respectively described in Eq. (14) as 
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 Upon substituting  Eqs. (7) and (14) in (13), the skin friction coefficient becomes  
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 while the Nusselt number translates to 
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The differentiation in the governing Eqs. is carried out with respect to 𝜂 where 𝜂 is the similarity 

transformation variable. The description of various parameters incoporated in Eqs. (10-18) are 

summarised in Table 2. 

Table 2: The description of the  parameters used 

 

Parameter Description 

 

𝐾 Material parameter 

𝑝 Nonlinear stretching parameter 

𝑀 Magnetic field parameter 

𝑅 Radiation parameter 

𝑃𝑟 Prandtl number 

𝐸𝑐 Eckert number 

𝛼 Space-dependent heat source 

𝛽 Temperature-dependentheat 

source 

𝜁 Biot number (convective 

 heating parameter)  

𝑡𝑤 Surface shear stress 

𝑞𝑤 Surface heat flux 

𝐶𝑓𝑥 Skin friction coefficient 

𝑁𝑢𝑥 Nusselt number 

 

 

 



 3.0 Entropy Generation 

The volumetric rate of entropy production in hydromagnetic thermal boundary layer micropolar 

fluid flow with dissipative and radiative properties are described as follows (see Afridi, 2017).  
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 In line with Bejan (1979), the non-dimensional entropy production number is the described by the 

ratio of the volumetric production of entropy and the characteristic rate of entropy generation. 

Thus, by means of the similarity quantities (7) and on the assumptionn of linear surface, then Eq. 

(17) becomes  

 𝐸𝑔 =
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 Here the overall entropy production in the system is denoted by 𝐸𝑔 while 𝑆𝑔 = 𝑘𝑈0/𝜈 stands for 

the characteristic entropy production and Ω = 𝑇∞/(𝑇𝑤 − 𝑇∞) describes the non-dimensional 

temperature difference. The Bejan number is used to describe the proportion of the entropy 

production by heat transfer to the total proportion in a system as represented in Eq. (19). The first 

term in Eq. (17 or 18) indicates production of entropy resulting from heat transfer (𝑁𝐻), the second 

term describes entropy due to viscous dissipation (𝑁𝑉) because of fluid friction and the third term 

represents generation of entropy by Joule heating (𝑁𝐽).  

 

 𝐵𝑒 =
𝑁𝐻

𝐸𝑔
=

𝑁𝐻

𝑁𝐻+𝑁𝑉+𝑁𝐽
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 where 𝑁𝐻 , 𝑁𝑉 and 𝑁𝐽 depict entropy production due to heat transfer, viscous dissipation and Joule 

heating in that order whereas 𝐵𝑒 is stands for the Bejan number which varies in the interval 0 ≤
𝐵𝑒 ≤ 1. The dominance of the parameters 𝑁𝑉 + 𝑁𝐽 over 𝑁𝐻 happens when 𝐵𝑒 = 0, the implication 

of this is that entropy production as a result of heat transfer (𝑁𝐻) is dominated by those of viscous 

dissipation and Joule (Ohmic heating) (𝑁𝑉 + 𝑁𝐽). Meanwhile, the value of 𝐵𝑒 = 1 implies that 

generation of entropy owing to heat transfer is dominant over that of viscous dissipation and Joule 

heating whereas the value of 𝐵𝑒 = 1/2 points to the fact that 𝑁𝐻 = 𝑁𝑉 + 𝑁𝐽.  

 

4.0  Solution Method and Result Validation 

The ordinary differential Eqs. (8-10) together with the boundary conditions (11) form a boundary 

value problem which are coupled and highly nonlinear in nature. In this regard, numerical solutions 

have been employed to profer results to the governing Eqs. (8-10). To achieve this, shooting 

techniques together with fourth order Runge-Kutta scheme on a computer algebra symbolic Maple 

2016 package have been engaged. The validity of the numerical codes have been tested by 

verifying the computional results obtained with the related existing results in literature to ascertain 

the level of accuracy of the solution in the limiting cases.  The values of the skin friction coefficient 

𝐶𝑓𝑥 are compared with those reported by Ulla et al. (2017) and Lu et al. (2018) for different values 

of the nonlinear stretching parameter 𝑝. The comparisons demonstrate good relationship as 

displayed in Table 3. From this table also, it is observed that higher values of the nonlinear 

stretching parameter 𝑝 encourage the growth of the skin friction coefficient 𝐶𝑓𝑥.  

 

 



Table 3: Computed values of 𝐶𝑓𝑥 as compared with existing results for variation in 𝑝 when 

 𝐾 = 𝐸𝑐 = 𝑀 = α = β = 0  
 

 𝑝   Ulla et al. (2017)  Lu et al. (2018)   Present 

    

0.0   0.6276   0.627547   0.627563 

0.2   0.7668   0.766758   0.766846 

0.5   0.8896   0.889477   0.889552 

1.0   1.0000   1.000000   1.000008  

1.5   -   1.061587   1.061609 

3.0   1.1486   1.148588   1.148601 

10.0   1.2349   -   1.234882 

100.0   1.2768   -   1.276781  

  

 

4.0  Results Analysis and Discussion 

 
For effective analysis and discussion of results we have included graphically the effects of the 

main controlling parameters on the dimensionless velocity, temperature, entropy generation and 

Bejan number. The computational values adopted have been carefully selected from the previous 

related researches such that they are suitable for the present work. In this regard, the parameter 

values: are 𝐾 = 0.5, 𝑀 = 0.5, 𝐸𝑐 = 0.01, 𝑝 = 0.2 = 𝑅, 𝑃𝑟 = 0.71, ζ = 0.2, 𝛼 = 𝛽 = 0.01 and 

Ω = 0.5, unless stated otherwise on the plots. 

  

Fig. 2  Reaction of velocity to changes in 𝑀 & 𝐾   Fig. 3 Temperature field for varying 𝑀 & 𝐾 

 

The plot in Fig. 2 depicts the impact of the magnetic field parameter 𝑀 on the velocity profile with 

variation in the micropolar term 𝐾. It is evident that the velocity field declines with an increase in 

𝑀 both in the presence and and absence of 𝐾. This response is attributed to the imposition of the 



transverse magnetic field on an electrically conducting fluid which create a resistive kind of force 

known as Lorentz force. This force acts against fluid motion and slowng it down. On the contrary, 

the introduction of the micropolar fluid enhances the fluid flow, this reaction is due to the 

lowerinng of the dynamic viscosity as 𝐾 rises.  In Fig. 3 however, the surface temperature 

appreciates with rising values of the magnetic field parameter. This is due to drag created by the 

Lorentz force on the flow. The effect of 𝐾 is to decrease the temperature profile as noted in this 

figure. 

Fig. 4 is the plot of the temperature against 𝜂 for various values of Eckert number Ec for changes 

in the Prandtl number 𝑃𝑟. As the fluid flow occurs, the internal friction due to fluid particles 

described by viscous dissipation as represented by Ec causes generation of heat and thereby 

leading to a rise in temperature. On the other hand, the Prandtl number 𝑃𝑟 is seen to diminish the 

thermal boundary layer thickness and consequently causing a decline in the surface temperature. 

Physically, Prandtl number defines the ratio of momentum diffusivity to that of thermal diffusivity, 

thus a rise in 𝑃𝑟 shows that the convection effect is dominant over conduction.  

The graph in Fig. 5 portrays the response of the dimensionless temperature with rising values of 

the Biot number 𝜁 (corresponding to convective heating). Evidently, a rise in the magnitude of 𝜁 

faciltates a rise in temperature profile as noted in this figure. Basically, a rise in 𝜁 indicates that 

the internal heat transfer resistance of the sheet is more than that of the surface of the sheet. In 

view of this, there is a rise in the temperature as 𝜁 advances, this response is in line with the report 

of Waqas et al. (2016) and Rahman (2011) who studied  linear surface velocity (i.e 𝑝 =1)  

 

Fig. 4  Impact of 𝐸𝑐 & 𝑃𝑟 temperature field   Fig. 5  Effect of 𝜁 on temperature profiles 

 

Figs. 6 and 7 demonstrate the influence of the Prandtl number Pr on entropy generation and Bejan 

number respectively.  It clearly observed that the entropy generation 𝑁𝑠 is an icreasing function 

of 𝑃𝑟 as depicted in Fig. 6. This response may be attributed to a rise in the temperature gradients 

due to rising values of Pr across the boundary layer. However, there is a decline in the Bejan 

number number with increasing values of 𝑃𝑟 as displayed in Fig. 7.  



 

Fig. 6 Entropy generation for variation in Pr        Fig. 7  Effect of 𝑃𝑟 on Bejan number 

 

The reaction in Fig. 7 clearly shows the dominance of the irreversibility due to magnetic field 

intensity and the viscous dissipation owing to fluid friction over that of heat transfer irreversibility. 

These reactions are equivalent to the observation of of Afridi et al. (2017). 

  

 

Fig. 8  Variation of Ω on entropy generation         Fig. 9 Effect of Ω on Bejan number 

 

The graph of changes occuring in the dimensionless temperature difference Ω withh entropy 

production is displayed in Fig. 8 while Fig. 9 portrays that of Bejan number 𝐵𝑒 response to 

variation in Ω. In Fig. 8 a rise in Ω provides a diminishing effect  on the entropy production and 



hence acts against loss of available energy in the system. Meanwhile, an increase in the value of 

Ω ensures that heat transfer irreversiblity is lower than that of fluid friction and magnetic field 

intensity in the total entropy production. This is because there is a fall in the Bejan number for 

rising values of Ω as shown in Fig. 9. 

 

 

Fig. 10  Variation of R on entropy generation               Fig. 11  Effect of 𝑅 on Bejan number 

 

The influence of radiation parameter on the entropy production is sketched in Fig. 10. It is shown 

that with rising values of 𝑅, the entropy generation rate is increasing. Hence, radiation should be 

reduced in order to minimize entropy production. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12  Variation of 𝑀 & 𝐾 on 𝐶𝑓𝑥               Fig. 13  Effect of Variation of 𝑀 & 𝐾 on 𝑁𝑢𝑥 



Meanwhile, the Bejan number rises near the stretching sheet with stronger heat transfer effect but 

away from the sheet, the opposite trend is noticed as noted in Fig.11. 

Fig. 12 reveals that a rise in the magnetic field term 𝑀 tends to strenthen the skin friction coeffient 

𝐶𝑓𝑥 whereas for any fixed value of 𝑀, an increase in the material parameter 𝐾 lowers 𝐶𝑓𝑥. Hence, 

application of micropolar fluid  can help to reduce the viscous drag along the stretching sheet. On 

the contrary, Fig. 13 shows that the heat transfer at the surface of the stretching sheet decreases 

with a rise in 𝑀 

 

Fig. 14.  Variation of 𝑀 & 𝑝 on 𝑁𝑢𝑥               Fig. 15. Effect of Variation of 𝑀 & 𝑝 on 𝐶𝑓𝑥 

 

The reaction of the Nusselt number to rising values of the magnetic field parameter 𝑀 in the 

presence of the nonlinear stretching parameter 𝑝 is described in Fig. 14. Observation in Fig. 14 

shows that heat transfer drops as the magnitude of 𝑝 increases. Meanwhile, the skin friction 

coefficient 𝐶𝑓𝑥 advances with a rise in 𝑝 for lower values of 𝑀 𝑎𝑠 indicated in Fig. 15, with higher 

values of 𝑀 ≈ 1.1 however,  a rise in 𝑝 tends to lower 𝐶𝑓𝑥. 

 

5.0  Conclusion 
The problem of entropy generation in hydromagnetic micropolar fluid flow along a nonlinear 

stretching sheet with convective heating boundary condition has been studied in the current work. 

The equations governing the model are formulated and converted into ordinary differential 

equations and then solved by means of shooting techniques alongside Runge-Kutta algorithm. The 

effects of the main controlling parameters have been discussed using various graphs. The results 

obtained also have strong relationship as validated with the published related exixting work in 

literature for limiting cases. From the study, it is deduced that  

 

 The use of micropolar fluid facilitates the reduction in the viscous drag while the magnetic 

field influence is to boost the skin friction coefficient. 

 The nonlinear stretching parameter tends to diminish transfer of heat at the sheet surface 

whereas the skin friction coefficient is raised with rising values of  the nonlinear stretching 



parameter especially with lower values of 𝑀 

  The irreversibility owing to viscous dissipation and Joule heating is stronger than that heat 

transfer irreversibility with a rise in 𝑃𝑟 and non-dimensional temperature difference Ω 

terms while the reverse is the case for a rise in radiation term 𝑅 especially near the wall. 

 The velocity field declines with rising values of magnetic field term 𝑀 in view of Lorentz 

force, howbeit, the temperature field advances with M while declining for growth in Prandtl 

number 𝑃𝑟. 
 The thermal field is strengthened with growing values of Eckert number and convective 

heating tern 𝜁 while it becomes weak with rising values of 𝑃𝑟. 
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