
Research Article
On Performance of Two-Parameter Gompertz-Based X
Control Charts

Johnson A. Adewara,1 Kayode S. Adekeye ,2 and Olubisi L. Aako3

1Distance Learning Institute, University of Lagos, Akoka, Lagos, Nigeria
2Department of Mathematical Sciences, Redeemer’s University, Ede, Nigeria
3Department of Mathematics & Statistics, Federal Polytechnic, Ilaro, Nigeria

Correspondence should be addressed to Kayode S. Adekeye; adekeyek@run.edu.ng

Received 21 October 2019; Revised 31 December 2019; Accepted 9 January 2020; Published 25 February 2020

Academic Editor: Ramón M. Rodŕıguez-Dagnino
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In this paper, two methods of control chart were proposed to monitor the process based on the two-parameter Gompertz
distribution. .e proposed methods are the Gompertz Shewhart approach and Gompertz skewness correction method. A
simulation study was conducted to compare the performance of the proposed chart with that of the skewness correction approach
for various sample sizes. Furthermore, real-life data on thickness of paint on refrigerators which are nonnormal data that have
attributes of a Gompertz distribution were used to illustrate the proposed control chart. .e coverage probability (CP), control
limit interval (CLI), and average run length (ARL) were used to measure the performance of the two methods. It was found that
the Gompertz exact method where the control limits are calculated through the percentiles of the underline distribution has the
highest coverage probability, while the Gompertz Shewhart approach and Gompertz skewness correction method have the least
CLI and ARL. Hence, the two-parameter Gompertz-based methods would detect out-of-control faster for Gompertz-based
X charts.

1. Introduction

Shewhart X control chart is one of the most widely used
statistical process control techniques developed to monitor
the process average [1]. Shewhart control charts are often
based on the assumption that the sample observations are
independently and identically distributed and the process
observations follow a normal distribution. However, skewed
data often violate the normality assumption and cause an
increase in error probability when control charts are used to
monitor the process. Skew probability distributions always
occur in the monitoring process of real-life data during the
production process, but gamma distribution is often selected
to examine the performances of control charts [2]. Fur-
thermore, whenever skew distributions exist, mean and
variance may not be appropriate summary statistics to
measure the process variation [3]. When the distribution of
data is known, the use of the exact method proposed to

provide accurate control limits is more likely to detect
whether a process is in control or not [4, 5].

Some exact control limits based on the form of un-
derlying distribution are investigated in the literature.
Construction of control charts using the theory of confi-
dence intervals, when the random variable follows inverse
Gaussian distribution, is considered by Edgeman [6].
Edgeman [6] justified his assumption by relying on the
central limit theorem for nonnormal processes whenever the
sample size used for control charting is less than 10.
However, quality characteristics are always better modelled
by using probability distribution with nonnegative support
rather than a normal distribution. Kantam and Sriram [7]
developed control charts to be used when the process
characteristic follows a gamma distribution. Kantam et al.
[8] developed control charts for log-logistic distribution,
Kan and Yazici [9] developed individual control charts for
Burr distributed and Weibull distributed data, Subba Rao
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and Kantam [10] introduced control charts for double ex-
ponential distribution, Yazici and Kan [11] developed
asymmetric control limits for small samples, Srinivasa Rao
and Sarath Babu [12] proposed control charts for linear
failure rate distribution, and Srinivasa Rao and Kantam [13]
developed control charts for half-logistic distribution per-
centiles. Srinivasa Rao et al. [14] developed control charts for
a variable quality characteristic that is assumed to follow
size-biased Lomax distribution based on the evaluated
percentiles of sample statistics like mean, median, midrange,
range, and standard deviation, Srinivasa Rao et al. [15]
developed control charts for a variable quality characteristic
that is assumed to follow new Weibull–Pareto distribution
based on the evaluated percentiles of sample statistics like
mean, median, midrange, range, and standard deviation,
Wang et al. [16] proposed control charts for monitoring the
lower Weibull percentiles under complete data and Type-II
censoring, and Rao [17] considered an exponentiated half-
logistic distribution to develop an attribute control chart for
time-truncated life tests with a known or unknown shape
parameter and references therein.

In this paper, the X Shewhart-type control chart based
on Gompertz distribution is proposed for monitoring a
nonnormal process. A simulation study was conducted to
compare the performance of the proposed chart with that of
the skewness correction approach for various sample sizes.
Furthermore, real-life data on thickness of paint on re-
frigerators which are nonnormal data that have attributes of
a Gompertz distribution were used to measure the perfor-
mance of the proposed control chart.

2. Two-Parameter Gompertz Distribution

Gompertz distribution is an exponentially increasing, con-
tinuous probability distribution. It is basically a truncated
extreme value distribution [18]. Gompertz distribution is a
lifetime distribution and is often applied to describe the
distribution of adult life spans by actuaries and demogra-
phers. It is considered for the analysis of survival in some
sciences such as biology, gerontology, computer science, and
marketing science [19].

.e Gompertz distribution is an extension of the ex-
ponential distribution. According to Alizadeh et al. [20], the
cumulative distribution function (CDF) and probability
density function (PDF) of the Gompertz generalized family
of distributions are given, respectively, by

F(x) � 1 − e
(θ/c) 1− [1− G(x)]c{ }; θ>0, c>0, (1)

f(x) � θg(x)[1 − G(x)]
− c− 1

e
(θ/c) 1− [1− G(x)]c{ }, θ>0, c>0,

(2)

where θ and c are additional shape parameters which are
introduced to vary tail weights and G(x) and g(x) are,
respectively, the CDF and PDF of the exponential distri-
bution which is the parent distribution..e CDF and PDF of
the exponential distribution with the parameter λ are given
by the following equations:

G(x) � 1 − e
− λx

, λ> 0, (3)

g(x) � λe
∧
(− λx), λ> 0. (4)

.erefore, the PDF of the Gompertz exponential dis-
tribution is derived by inserting the expression in equations
(3) and (4) into equation (2). .is gives

f(x) � θλe
λxc

e
(θ/c) 1− eλxc[ ], x> 0, θ> 0, c> 0, λ> 0.

(5)

.e CDF of the Gompertz exponential distribution is
derived by inserting equation (3) into equation (1). .us, we
have the expression

F(x) � 1 − e
(θ/c) 1− eλxc[ ], θ> 0, c> 0, λ> 0. (6)

c, λ, and θ in (5) and (6) may be combined into two
independent parameters, say, t and z defined as follows: z �

θ/c and t � λc.
.en, f(x) in equation (5) becomes

f(x) � tze
tx

e
z 1− etx[ ], x> 0, t> 0, z> 0. (7)

.e CDF, F(x) in equation (6), becomes

F(x) � 1 − e
z 1− etx[ ]; x> 0, t> 0, z> 0. (8)

.e expressions in equations (7) and (8) are, respectively,
the PDF and CDF of Gompertz distribution with parameters
t and z.

2.1. GompertzX Control ChartUsing the Shewhart Approach.
Consider the Shewhart X chart which contains the center
line (CL) that represents the average value of quality
characteristics corresponding to the in-control state. .ere
are two horizontal lines, namely, the lower control limit
(LCL) and upper control limit (UCL). .ese control limits
are selected so that if the process is in control, nearly all
sample points will fall within them. If w is a statistic that
measures the quality characteristic and if the mean and the
variance of w are given as μGw and σ2Gw, respectively, then the
general model for the Shewhart control chart is given as

upper control limit � UCL � μGw + LσGw,

center line � CL � μGw,

lower control limit � LCL � μGw − LσGw,

(9)

where L is the distance of the control limits from the center
line.

In the construction of control charts, it is common to set
L � 3. Vysochanskij and Petunin [21] refined Chebyshev’s
inequality by including the factor of 4/9 and made it possible
to set 3-sigma limits for any unimodal distribution. .e
Vysochanskij–Petunin inequality allows the inference that,
for any unimodal distribution, at least 95% of the data will be
captured by limits placed at 3-sigma. .erefore, for Gom-
pertz-based X control charts, the control limits can be
obtained as follows:

2 Journal of Probability and Statistics



upper control limit � UCLG � μG + 3
���

σ2G
􏽱

,

center line � CLG � μG,

lower control limit � LCLG � μG − 3
���

σ2G
􏽱

.

(10)

When the process data are assumed to follow Gompertz
distribution, we used the expression in equation (7) to derive
the mean and variance of the Gompertz distribution
(μG and σ2G). Using Maple software, the mean of Gompertz
exponential distribution is derived in an integral form (see
details in Appendix). .e derived mean is given as

mean � μG �
ez

t
􏽚
∞

z
ln

w

z
􏼒 􏼓e

− wdw �
ezEi(1, z)

t
. (11)

Similarly, the variance of the Gompertz exponential
distribution is derived and presented in Appendix. .e
derived variance is

σ2G �
ez

t2
􏽚
∞

z
ln2

w

z
􏼒 􏼓e

− wdw −
ez

t
􏽚
∞

z
ln

w

z
􏼒 􏼓e

− wdw􏼢 􏼣

2

�
1
6t2

e
z

− 6e
z
Ei(1, z)

2
+ π2

− 12 hypergeom([1, 1, 1],􏼐􏼐

2, 2, 2], − z)z + 6 ln (z)
2

+ 12 ln(z)c + 6c
2

􏽨 􏼑􏼑,

(12)

where Ei(a, z) is an exponential integral and hypergeom (.)
is a generalized hypergeometric function.

2.2.GompertzX ControlChartUsing the Skewness Correction
Approach. .e skewness correction (SC) method is used for
constructing the X control charts for skewed distributions.
Its asymmetric control limits are obtained by taking into
consideration the degree of skewness estimated from sub-
groups, and with no assumptions on the distributions.
According to Chan and Cui [4], if the parameters of a
process are known, the control limits of the X control chart
are given by

UCLX � μX +
3 + C∗4( 􏼁σX�

n
√ ,

LCLX � μX +
− 3 + C∗4( 􏼁σX�

n
√ ,

(13)

where C∗4 is the control chart constant for the SC method. It
should be noted that C∗4 � 0 if the underlying distribution is
symmetric and the control limits of the SC method for X

control chart will reduce to the traditional control limits of
the Shewhart X control chart. However, if the distribution is
asymmetrical, Chan and Cui [4] gave the constant C∗4 in
equation (13) to be

C
∗
4 �

(4/3)k3(X)

1 + 0.2k23(X)
, (14)

where k3(X) is the skewness of the subgroup mean X.

Let x1, x2, . . . , xn be samples from Gompertz distribu-
tion with mean μGw and standard deviation σGw. .e control
limits and the center line for a skewness correction method
for the X chart are

UCLX � μGw +
3 + C∗4( 􏼁σGw�

n
√ ,

CLX � μGw,

LCLX � μGw +
− 3 + C∗4( 􏼁σGw�

n
√ .

(15)

To obtain the constant C∗4 , Bowley’s formula is chosen
for finding the coefficient of skewness which is given by

k3G(X) �
Q3 − 2Q2 + Q1

Q3 − Q1
, (16)

where Qi (i � 1, 2, 3) is the ith quartile of the Gompertz
distribution.

Hence, the constant

C
∗
4 �

(4/3)k3G(X)

1 + 0.2k2
3G(X)

, (17)

where k3G(X) is the skewness of the subgroup mean X.

2.3. Using Exact Control Limits. Let x1, x2, . . . , xn be a
random sample subgroup of industrial process data of size n
supposed to have been drawn from the two-parameter
Gompertz exponential distribution with a targeted pop-
ulation average; under repeated sampling, the statistic X

gives whether the process average is around the targeted
mean or not. Statistically speaking, we have to find the “most
probable” limits within which X falls. It is well known that
3σ limits of normal distribution include 99.73% of proba-
bility. Hence, we have to search for two limits of the
sampling distribution of sample mean in Gompertz expo-
nential distribution such that the probability content of
those limits is 0.9973 (see Srinivasa Rao et al. [14] and
Srinivasa et al. [15]).

Symbolically, we have to find L and U such that

P L≤ xi ≤U( 􏼁 � 0.9973, (18)

where xi is the mean of sample size n. Taking the equitailed
concept, L and U are, respectively, 0.00135 and 0.99865
percentiles of the sampling distribution of xi.

P Z0.00135 ≤X≤Z0.99865( 􏼁 � 0.9973,

P
Z0.00135

μG

.x≤xi ≤
Z0.99865

μG

.x􏼠 􏼡 � 0.9973,

P A
∗
2p.x≤ xi ≤A

∗∗
2p .x􏼐 􏼑 � 0.9973,

(19)

where x is the grand mean and xi is the ith subgroup mean.
.us, A∗2p andA∗∗2p are the percentile constants of the x chart.
Hence, the control limits and the center line for an exact X

control chart are
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UCL � A
∗∗
2p .x,

CL � x,

LCL � A
∗
2p.x.

(20)

2.4. Performance Evaluation. In this work, three indicators
were used to measure the performance of the derived
control charts discussed above. .ey are the coverage
probability (CP), control limit interval (CLI), and average
run length (ARL). .e coverage probability is the

probability of the number of points within the control
limits. It is used to compare the stability of the simulated
process under different methods. .e CLI and ARL were

Table 1: Control limits for skewness correction, Gompertz Shewhart, Gompertz skewness correction, and Gompertz exact control charts.

Sample size
Skewness
correction Gompertz Shewhart Gompertz skewness

correction Gompertz exact

LCL UCL LCL UCL LCL UCL LCL UCL
2 0 0.617 0 0.2266 0 0.2287 0.0003 0.2810
3 0 0.573 0.0135 0.1470 0.0126 0.1462 0.0005 0.1791
4 0 0.491 0.0209 0.1515 0.0204 0.1510 0.0004 0.2004
5 0 0.469 0.0315 0.1256 0.0309 0.1250 0.0006 0.1658
7 0 0.402 0.0454 0.1169 0.0448 0.1163 0.0009 0.1555
10 0 0.328 0.0563 0.1018 0.0560 0.1014 0.0021 0.1303

Table 2: Coverage probabilities.

Sample size Skewness correction Gompertz Shewhart Gompertz skewness correction Gompertz exact
2 1.0 0.989 0.989 0.998
3 1.0 0.918 0.917 0.978
4 1.0 0.947 0.947 0.997
5 1.0 0.875 0.875 0.988
7 1.0 0.825 0.826 0.991
10 1.0 0.695 0.695 0.976

Table 3: .ickness of paint on refrigerators.

Subgroup
Shift

1 2 3 4 5
1 2.7 2.3 2.6 2.4 2.7
2 2.6 2.4 2.6 2.3 2.8
3 2.3 2.3 2.4 2.5 2.4
4 2.8 2.3 2.4 2.6 2.7
5 2.6 2.5 2.6 2.1 2.8
6 2.2 2.3 2.7 2.2 2.6
7 2.2 2.6 2.4 2.0 2.3
8 2.8 2.6 2.6 2.7 2.5
9 2.4 2.8 2.4 2.2 2.3
10 2.6 2.3 2.0 2.5 2.4
11 3.1 3.0 3.5 2.8 3.0
12 2.4 2.8 2.2 2.9 2.5
13 2.1 3.2 2.5 2.6 2.8
14 2.2 2.8 2.1 2.2 2.4
15 2.4 3.0 2.5 2.5 2.0
16 3.1 2.6 2.6 2.8 2.1
17 2.9 2.4 2.9 1.3 1.8
18 1.9 1.6 2.6 3.3 3.3
19 2.3 2.6 2.7 2.8 3.2
20 1.8 2.8 2.3 2.0 2.9
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Figure 1: Density and Q-Q plots of the thickness of paint data.
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Figure 2: CDF of the data and hypothetical Gompertz distribution.
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Figure 3: Skewness correction X control chart.
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Figure 4: Gompertz Shewhart X control chart.
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Figure 5: Gompertz skewness correction X control chart.
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used to compare the performance of the different methods
for the real-life data.

3. Simulation Study

.e steps for the simulation study are presented as
follows.

Step 1: Control Chart Construction

(1) Generate n independent Gompertz (2.2, 4.7) variates
for n� 2, 3, 4, 5, 7, 10

(2) Repeat Step (1) 30 times (r� 30)
(3) Compute the control limits for the X chart using

equation (10) for the Shewhart approach, equation
(15) for the skewness correction approach, and
equation (20) for the exact approach

Step 2: Control Chart Operation

(1) For sample size n� 2, 3, 4, 5, 7, 10, generate a random
subgroup from Gompertz (2.2, 4.7) variates

(2) Repeat Step (1) 100 times (r� 100)

(3) Compute the sample mean X

(4) Record whether the sample mean X is out of the
control limits of Step 3 and estimate a coverage
probability for all methods

(5) Repeat Steps 1 through 4 and obtain an average
coverage probability for each control chart

4. Results

Using the two steps presented in Section 3, data were
generated from a class of distribution of Gompertz with
parameters t� 2.2 and z� 4.7 using Monte Carlo simulation.
.e coefficient of skewness of the generated data is 0.9226.
.e control limits for the two proposed methods and the
exact method were computed to determine the stability of
the simulated process. .e coverage probability of the X

charts based on classical Shewhart was adopted. .e results
obtained were compared with those of the skewness cor-
rection method. .e control limits of the skewness cor-
rection method and the Gompertz Shewhart approach,
Gompertz skewness correctionmethod, and Gompertz exact
method using equations (10), (15), and (20), respectively, are
computed and presented in Table 1.

Table 4: Performance index values.

Skewness correction Gompertz Shewhart Gompertz skewness
correction Gompertz exact

CP CLI ARL CP CLI ARL CP CLI ARL CP CLI ARL
0.05 0.0472 1.0526 0.95 0.802 20 0.95 0.802 20 1.0 2.006 ∞
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Figure 6: Gompertz exact X control chart.
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To measure the performance of the charts, the coverage
probability was computed for the four methods. .e ob-
tained results are presented in Table 2.

4.1. Data on5ickness of Paint on Refrigerators. .e data on
the thickness of paint on refrigerators presented in Table 3
were obtained from Priya and Kantam [22]. .e data are for
20 subgroups of size n� 5 from a process that is known to be
in control.

To test for the normality of the data in Table 3, the
density and the Q-Q plots of the mean of the data are
determined and presented in Figure 1. Furthermore, the
Jarque–Bera normality test was obtained to be 10.556 with a
p value of 0.005.

From Figure 1, it is clear that the data are not normally
distributed. .e p value of the Jarque–Bera normality also
confirmed the nonnormality of the data. Furthermore, the
skewness coefficient was computed to be 1.2195. Hence, the
data are skewed data. Based on the fact that the data are
skewed data, the Gompertz distribution was used to model
the data, and it was discovered that the CDF of the data is
approximately Gompertz (see Figure 2). .us, the data are
approximately a Gompertz random variable. Hence, we can
use the Gompertz-based X charts to monitor the process
that produces the data.

.e mean of the thickness of paint of one hundred
refrigerators in twenty subgroups for sample size 5 was
computed and used to compute the control limits derived in
Section 2. .e skewness correction, Gompertz Shewhart,
Gompertz skewness correction, and Gompertz exact
methods are used for the construction of the X charts. .e
control charts for the four methods are presented in
Figures 3–6.

.e performance indices, namely, coverage probability
(CP), control limit interval (CLI), and average run length
(ARL), for the four methods are presented in Table 4.

5. Discussion of Results

.e results of the control limits in Table 1 for the proposed
methods showed improved limits compared to the
skewness correction limits. .e results of the coverage
probabilities in Table 2 revealed that as the sample size
increases, the coverage probabilities decrease for Gom-
pertz Shewhart and Gompertz skewness correction
methods. However, the coverage probabilities for skew-
ness correction and Gompertz exact methods are more
stable than those of Gompertz Shewhart and Gompertz
skewness correction methods. .e obtained results of the
real-life data in Table 4 showed that the CLI and ARL of
Gompertz Shewhart and Gompertz skewness correction
methods are smaller but those of the Gompertz exact
method are the smallest.

6. Conclusion

.is study proposed control limits for the Gompertz X

control chart using different approaches. Coverage proba-
bility was used to compare the stability of the methods. .e

results show that as the sample size increases, the coverage
probabilities for the Gompertz Shewhart approach and
Gompertz skewness correction approach decrease. .e
coverage probabilities for skewness correction and Gom-
pertz exact methods are more stable than those of the
Gompertz Shewhart approach and Gompertz skewness
correction method. .e results of the real-life data using the
CLI and ARL showed that the Gompertz Shewhart approach
and Gompertz skewness correction method would be able to
detect out-of-control faster than the exact method for
Gompertz-based X charts..e CLI and ARL of the skewness
correction method are too small and thereby would raise
false alarm when there are none. Hence, it is recommended
that the Gompertz Shewhart approach and Gompertz
skewness correction method can be used to monitor skewed
process data that have the attribute of a two-parameter
Gompertz distribution.

Appendix

A: Derivation of Mean and Variance of the
Gompertz Distribution (μG and σ2G)

When the process data are assumed to follow Gompertz
distribution, we used the expression in equation (7) to
derive the mean and variance of the Gompertz distri-
bution (μG and σ2G). Using Maple software, the mean and
variance of the Gompertz distributions are obtained as
follows.

E(x) � 􏽚
∞

0
xf(x)dx. (A.1)

Using (5) for f(x), we obtain

E(X) � 􏽚
∞

0
xθλe

λxc
e

(θ/c) 1− eλxc[ ]dx. (A.2)

Let t � λc, p � θλ, and z � θ/c, then

E(X) � 􏽚
∞

0
xpe

z
e

tx
e
− zetx

dx. (A.3)

Let s � pez, then we have

E[X] � 􏽚
∞

0
xse

tx
e
− zetx

dx. (A.4)

Let etx � u/z, therefore, du � ztetxdx and dx �

(du/ztetx) � (du/tu).
When x � 0, u � zetx � zet(0) � ze0 � z.
When x �∞, u � zetx � zet(∞) � ze∞ �∞.
From equation (7),

E(X) � 􏽚
∞

0
xse

tx
e
− zetx

dx

� 􏽚
∞

z
xs

u

z
e
− udu

tu

� 􏽚
∞

z

s

zt
xe

− udu �
s

zt
􏽚
∞

z
xe

− udu.

(A.5)
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But u � zetx, etx � u/z, tx � ln (u/z), and x �

(1/t)ln (u/z).
Recall that (X) � (s/zt) 􏽒

∞
z

xe− udu, therefore,

E(X) �
s

zt
􏽚
∞

z

1
t
ln

u

z
e
− udu

�
s

zt2
􏽚
∞

z
ln

u

z
e
− udu

�
s

zt2
􏽚
∞

z
ln

u

z
e

− udu

�
pez

(θ/c)λ2 c2
􏽚
∞

z
ln

u

z
e

− udu

�
θλeθ/c

(θ/c)λ2 c2
􏽚
∞

z
ln

u

z
e

− udu

�
e(θ/c)

λc
􏽚
∞

z
ln

u

z
e

− udu.

(A.6)

.e mean of Gompertz exponential distribution is
hereby derived in an integral form as

E(X) �
e(θ/c)

λc
􏽚
∞

z
ln

u

z
e

− udu, (A.7)

where

z �
θ
c

,

t � λc,

u � w � ze
tx

�
θ
c

e
λcx

.

(A.8)

.en, the mean becomes

mean � μG �
ez

t
􏽚
∞

z
ln

w

z
e

− wdw �
ezEi(1, z)

t
. (A.9)

.e variance of the Gompertz exponential distribution is
derived as follows: If X is a Gompertz random variable, then
the PDF of X is

f(x) � θλe
λxc

e
(θ/c) 1− eλxc[ ]. (A.10)

.en, the variance of X is derived using the
expression

Var(X) � E X
2

􏼐 􏼑 − [E(X)]
2
, (A.11)

where
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x
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e

(θ/c) 1− eλxc[ ]dx.

(A.12)

Let t � λc, p � θλ, and z � θ/c, then

E X
2

􏼐 􏼑 � 􏽚
∞

0
x
2
pe

tx
e

z 1− etx[ ]dx

� 􏽚
∞

0
x
2
pe

tx
e

z
e
− zetx

� 􏽚
∞

0
x
2
pe

z
e

tx
e

− zetx

dx.

(A.13)

Let s � pez, then E(X2) becomes

E X
2

􏼐 􏼑 � 􏽚
∞

0
x
2
se

tx
e
− zetx

dx. (A.14)

Let u � zetx, therefore, etx � u/z, du � ztetxdx, and
dx � (du/ztetx) � (du/tu).

When x � 0, u � zetx � zet(0) � ze0 � z.
When x �∞, u � zetx � zet(∞) � ze∞ �∞.
.en,
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(A.15)

But etx � (u/z), tx � ln (u/z), x � (1/t)ln(u/z), and
x2 � ((1/t)ln (u/z))2 � (1/t2)(ln (u/z))2.

Hence,
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(A.16)

Using the expression derived above, the variance of the
Gompertz exponential distribution is

Var(X) �
e(θ/c)

λ2 c2
􏽚
∞

z
ln
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z
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2
e

− udu
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e
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2
⎛⎝ ⎞⎠,

(A.17)

where z � (θ/c ), t � λc, and u � w � zetx � (θ/c )eλcx, and
then the variance becomes
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(A.18)

where Ei(a, z) is an exponential integral and hypergeom (·)

is a generalized hypergeometric function.
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