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Abstract 
The level of irreversibility that takes place in any thermal process is measured by means of entropy generation. In 
different industrial and engineering sectors, the phenomena of heating and cooling are very crucial in various energy 
and electronic devices. In the light of this, the optimization of entropy production with the aim of preventing any 
energy loss, which can affect the performance of a particular system is very necessary. Hence, this study investigates 
entropy generation analysis in an electrically conducting and dissipative micropolar fluid over a nonlinear vertically 
stretching sheet being influenced by thermal radiation, non-uniform heat source/sink, variable magnetic field strength 
and variable electrical conductivity. The dimensionless equations governing the flow and heat transfer are 
computationally solved using shooting techniques alongside fourth order Runge-Kutta algorithms embedded in Maple 
2016 software. The effects of the main physical parameters on the velocity, temperature, microrotation, entropy 
generation and Bejan number are graphically displayed and discussed. The facts from the study show that heat transfer 
irreversibility is stronger than that of viscous dissipation and Joule heating as the radiation parameter rises whereas the 
opposite is the case with rising values of the micropolar and Brikman parameters. 
Keywords: Entropy generation; micropolar fluid; viscous dissipation; nonlinear stretching sheet 

 
1.0Introduction 
The study of boundary layer fluid flow induced by stretching sheet has been engaged by researchers and engineers 
since initiated by Sakiadis (1961) due to the consequential applications in industrial and engineering operations. 
During fabrication operations in many engineering activities, the movement of heat treated materials as well as those 
produced by extrusion processes between a feed roll and a wind up on transmit belts characterize that of stretching 
surface. The applications of such can be found in textile and paper production, extrusion of plastic sheet and metal, 
drawing of copper wires, glass blowing, drawing of plastic films etc. Based on these usefulness, Crane (1970) reported 
an analytically solution on a two-dimensional linearly stretching sheet where the velocity and distance from the slit 
vary proportional to each other. Thereafter, several researchers have investigated this subject checking the impact of 
different parameters, boundary conditions and geometry (Kumar, 2009; Pal and Mondal, 2014; Fatunmbi and Fenuga, 
2017; Makinde, et al., 2018).  
 
Nevertheless, all these have been conducted on a linearly stretching sheet. Meanwhile, it has been reported by Gupta 
and Gupta (1977) that the sheet may be stretched in a nonlinear manner. In view of such report, researchers such as 
Vajravelu (2001); Cortell (2007, 2008); Hayat (2008); Laxami and Shankar (2016), etc have examined boundary layer 
flow and heat transfer in a viscous fluid over a nonlinear stretching sheet with diverse parameter of interest. These 
researches however have been carried out on Newtonian fluids only without considering the more interesting and 
useful non-Newtonian fluid. 
 
Investigations have shown that Newtonian fluids are incapable in capturing the characteristics of complex and 
complicated fluids which are useful for industrial purposes and engineering processes. Such characteristics can only 
be captured by non-Newtonian fluids. On this ground, the non-Newtonian fluids have become prominent in the recent 
years due to the huge applications in manufacturing and engineering activities such as in petroleum engineering, food 
and polymer processing, bio-mechanic engineering, etc (Anuradha and Punithavalli, 2019). Various models of 
non-Newtonian fluid exist due to flow diversity in nature, the rheological attributes of non-Newtonian fluids cannot be 
described by a single constitutive relationship between stress and shear rate. These models include: Casson fluids, 
Jeffery fluids, Williamson fluids, micropolar fluids, etc. Out of these, however, the micropolar fluid is found notable. 
 Micropolar fluids as pioneered by Eringen (1966, 1972) consist of fluids with microstructure, they contain rigid 
bar-like, randomly oriented (or spherical) particles suspended in a viscous medium such as polymeric fluids, colloidal 
fluids, liquid crystals, animal blood where particles deformation is ignored. The possible applications of such fluids in 
engineering and industrial operations can be found in the bio-mechanic and chemical engineering, extrusion of 
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polymer, slurry technologies, synovial lubrication, etc (Lukaszewicz, 1999; Reena and Rana, 2009). Motivated by 
these crucial applications, various researchers have investigated boundary layer flow and heat transfer of micropolar 
fluid considering various parameters, geometries, wall conditions and assumptions (see Chaudhary and Jha, 2008; 
Reddy and Chamkha, 2016; Kamran, 2018; Arifuzzaman  et al., 2018). Meanwhile, all these studies were restricted to 
analysis of first law of thermodynamics, however, studies that are carried out with the second law of thermodynamics 
relating to entropy generation are found dependable as compared to those the first law (Kobo and Makinde, 2010). 
 
Entropy production analysis is explained through the second law of thermodynamics, it is a means of quantifying the 
level of irreversibility that occurs in a thermodynamical system. It is a way of measuring the level of work destruction 
that is available in a system so as to figure out the entropy generation rate in a system with a bid to upgrade such 
system. In heat transfer problems, entropy generation is a means of measuring the irreversibility that takes place in a 
system with the use of the second law of thermodynamics (Kobo and Makinde, 2010). Owing to crucial application of 
such studies in engineering and manufacturing activities, various scholars (see Bejan, 1982, 1996;  Salawu et al., 
2019; Salawu and Fatunmbi, 2017; Srinivasacharya and Bindu, 2017; Seth et al., 2018; Makinde and Eegunjobi, 2018; 
El-Aziz, and Saleem, 2019). have investigated such study on both Newtonian and non-Newtonian fluids. However, 
none of these researches considered entropy generation in an electrically conducting micropolar fluid over an inclined 
stretching sheet. 
 
 In particular, Afridi  et al. (2017) numerically addressed entropy generation along an inclined impermeable sheet 
with MHD Newtonian fluid while ignoring non-Newtonian micropolar fluid inspite of its huge applications. Those 
researchers also neglected the impact of thermal radiation, Joule heating and heat source/sink effects in their study. 
These parameters have been found useful in engineering and industrial operations such as in gas turbines, 
astrophysical flows, power plants, etc. Hence, this study has been carried out to extend the work of Afridi  et al. 
(2017) by engaging the non-Newtonian hydromagnetic micropolar fluid with the inclusion of thermal radiation, Joule 
heating, non-uniform heat source/sink effects and considering a nonlinear surface instead of linear surface reported by 
those authors.  
 
 
2.0Mathematical Development of the Model 
 
In this work, the model consists of entropy production analysis on a two-dimensional, steady flow of an 
incompressible and electrically conducting, dissipative and thermally radiating micropolar fluid moving along a 
nonlinear stretching sheet ss displayed in Fig. 1. It is assumed that the magnetic field varies with � which is applied 
transversely to the flow direction and that the electrical conductivity also varies with the velocity component � in the 
� direction where� is the coordinate along the surface in the flow direction and y is the coordinate normal to it. The 
sheet stretches with a velocity � = ���  along �  direction where � > 0  is a constant and �  is the nonlinear 
stretching parameter. Neglecting the induced magnetic field, pressure gradient, electric field and assuming that the 
flow properties are isotropic and constant and using the Boussinesq and boundary layer approximations together with 
the stated assumptions, the governing equations are listed in Eqs. (1-4).  
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Fig. 1.The Sketch of the Physical Model  
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 The relevant boundary conditions for this study are as follows:  

 
� = �� = ���, � = ��, � = −�

��

��
, � = �� = ���� + ���	��	� = 0,

� → 0, � → 0, � → ��	��	� → ∞.
 (5) 

 From the governing Eqs. (1-4), we note that � and � are velocity components along � and � direction in that order 
while � indicates dynamic viscosity, � describes kinematic viscosity, � denotes thermal conductivity, � stands for 
the density of the ambient fluid whereas the vortex viscosity is written as � while � symbolizes micro-inertial 
density, �� connotes the specific heat at constant pressure and � represents the spin gradient viscosity. Meanwhile, 

�, ��, ��, �, �⋆ and �⋆ describe the fluid temperature, temperature of the stretching sheet, free stream temperature, 
microrotation component normal to �, � plane, mean absorption coefficient and Stefan-Boltzmann constant in that 
order.However, in Eq. (5), the wall temperature parameter is indicated by �, the suction/injection term is denoted by 
��  with �� = ���

(���)/�  (see Yazdi, 2011) where ��  is a constant while �  denotes the micropolar surface 
parameter. 

The electric conductivity is assumed to be (see Das, 2011)  
 ��′ = ���, (6) 

 also, the magnetic field is a function of �as given by Das (2011) as 

 �(�) =
��

√�
 (7) 
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 where �� and �� are constants. 
Following Pal and Mondal (2013), the non-uniform heat source/sink �′′′ written in Eq. (4) is expressed as  

 �′′′ =
���

���
[�⋆(�� − ��)�′ + �⋆(� − ��)] (8) 

 with �⋆ = �����  and �⋆ = �⋆����  being the space and heat dependent source/sink respectively. With �⋆ >
0, �⋆ > 0 relates to heat source while �⋆ < 0, �⋆ < 0 implies heat sink. 
Follow from the work of Hayat (2008), the modelled Eqs. (1-4) have been simplified by means of similarity variables 
(9).  
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 Eqs. (10-12) are the simplified ordinary differential equations governing the problem. 
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 With the boundary conditions becoming   
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 (13) 
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 Where the material parameter is indicated by �, the suction/injection parameter is symbolized as ��, � symbolizes 
buoyancy parameter, �  depicts the Magnetic field parameter while �  symbolizes space-dependent source/sink 
whereas temperature-dependent heat source/sink is designated by �. The thermal Grashof number is indicated by �� 
and the Eckert number is represented as �� whereas the differentiation is done with respect to � and �� indicates 
the Prandtl number and � is the radiation parameter. 
 
The important quantities of engineering delight are the skin friction coefficient and the Nusselt number as given in Eq. 
(15) in that order.  

 ��� =
��

���
� , ��� =

���

�(�����)
, (15) 

 with �� being shear stress and �� heat flux at the surface such that  

 �� = �(� + �)
��
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 in view of equations (9) and (16), the skin friction coefficient becomes 

 ��� = �
���

�
�
�/�

[1 + (1 − �)�]���
��/�

�′′(0), (17) 

whereas the Nusselt number becomes  

 ��� = −(1 + �) �
���

�
�
�/�

���
�/�

�′(0) (18) 
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4.0 Entropy Generation 
 
The entropy generation rate in an electrically conducting, thermally radiating and dissipative micropolar fluid can be 
described as follows (see Afridi, 2017).  
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 On using Eq. (9) in (19) with � = 1, it yields  
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 where �� is the overall entropy production in the system, ��� = ��/� is the characteristic entropy generation while 

Ω = ��/(�� − ��) indicates dimensionless temperature difference. Bejan number is used to describe the proportion 
of the entropy production by heat transfer to the total proportion in a system. The first term in Eq. (19 or 20) signifies 
entropy generation due to heat transfer (���) while the second term indicates that of viscous dissipation (���) due to 
fluid friction whereas the last term denotes generation of entropy by Ohmic heating (���). This is represented in Eq. 
(21).  

 �� =
���

��
=

���

�����������
, (21) 

 
 where ���, ��� and ��� depict entropy production due to heat transfer, viscous dissipation and Ohmic heating in 
that order. �� is the Bejan number in the interval 0 ≤ �� ≤ 1. The dominance of the parameters ��� + ��� over 
��� happens when �� = 0, the implication of this is that entropy production as a result of heat transfer (���) is 
dominated by those of viscous dissipation and Ohmic heating (��� + ���). On the other hand, the value of �� = 1 
implies that generation of entropy due to thermal heat transfer is stronger than that of viscous dissipation and Ohmic 
heating whereas the value of �� = 1/2 points to the fact that ��� = (��� + ���).  
 
3.0Solution Method and Result Validation 
The boundary value Eqs. (10-13) have been solved by shooting technique coupled with Runge-Kutta techniques of 
fourth order. The solution is achieved by means of computer algebra symbolic Maple 2016 package. To validate the 
numerical code employed in this research work, the computed values of heat transfer at the sheet surface have been 
cross-checked with previously reported data of Chen (1998) in the limiting situation as shown in Table 1. There is a 
good agreement between the results obtained in the present work and the existing work of Chen (1998). Moreso, 
observation shows that higher values of Prandtl number facilitates heat transfer and similarly, a rise in the positive 
value of the wall temperature parameter � boosts transfer of heat.  
 
Table 1: Computed values of ��� compared with Chen (1998) for variation in � and �� when � = 1, � = �� =

� = � and � = �� = 0 
 

  Chen (1998)    Present   
�� � = −2 � = 0 � = 2  � = −2 � = 0 � = 2 

0.72 
1.0 
3.0 
7.0 

10.0 
100.0 

0.72000 
1.00003 
3.00046 
7.00240 

10.00047 
100.310 

0.46315 
0.58199 
1.16523 
1.89537 
2.30796 
7.76536 

1.08853 
1.33334 
2.50972 
3.97150 
4.79686 
15.7118 

 0.71920 
0.99999 
2.99999 
6.99999 
9.99999 

99.99999 

0.46325 
0.58198 
1.16524 
1.89540 
2.30800 
7.76563 

1.08854 
1.33333 
2.50972 
3.97151 
4.79687 

15.71195 
 

Table 2: Computed values of ��� as compared with existing results for variation in � when � = 1, �� = � = 1.0,

� = �/4 and � = 0 
 

� Afridi et al. (2017)  Present Study 
 ��� ���  ��� ��� 

      
0.0 1.4142 0.5546  1.414214 0.555022 
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0.5 
1.0 
1.5 

1.2427 
1.0886 
0.9439 

0.6976 
0.7931 
0.8974 

1.242749 
1.088662 
0.943990 

0.697685 
0.793130 
0.867403 

 
Similarly, the values of the skin friction coefficient ��� and Nusselt number ��� are also compared with those 

reported by Afridi et al. (2017) for different values of the buoyancy stretching parameter �. The comparisons 
demonstrate good relationship as displayed in Table 2. From this table also, it is observed that higher values of the 
buoyancy parameter tend to lower the ��� whereas the heat transfer is enhanced with a rise in �.  

 
 

4.0  Results Analysis and Discussion 
 
The reactions of the main physical parameters on the dimensionless velocity, microrotation, temperature, entropy 
generation rate and Bejan number are hereby presented in form of graphs with appropriate analysis. In the numerical 
computations carried out, Use has been made of the following values as the default parameter values: � = 1.0,� =
1.5, �� = 0.01, λ = 4.0, � = ζ = � = 0.5, �� = 0.71, � = �/6, �� = 0.2, � = � = 0.3  and Ω = 0.5 . Unless 
otherwise stated on the graphs. 
Fig. 2-5 depicts the influence of the material micropolar parameter	�	on the velocity, microrotation profiles, entropy 
generation and Bejan number respectively. The plot in Fig. 2 shows that fluid mtion near the inclined sheet drop with 
rising values of � whereas away from the sheet, the motion of the fluid rises due to reduction in the fluid viscosity. 
Also observed is the fall in the velocity profiles with higher values of magnetic field parameter � due to the 
imposition of the Lorentz force. In Fig. 3, the microrotation profile adavnce for the increase in both	� and �. The 
negative values illustrate that there is a reverse rotation of the micro-particles.  

 

 
Fig. 2  Influence of L& M on velocity field   Fig. 3 Microrotation profiles for varying L& M 

 
The plot in Fig. 4 indicates that the entropy generation can be reducd near the stretching sheet with the use of the 
micropolar fluid. However, there is an increase in the entropy production further away from the sheet. The 
irreversibilitity due to viscous dissipation and Ohmic heating is stronger than that of heat trasfer irreversibility as L 
increases. This is so because thre is fall in the Bejan nimber as noted in Fig. 5. Fig. 6 is a plot of the temperature field 
against � for variation in the radiation parameter � in the presence of the Prandtl number ��. Clearly, a rise in R 
boosts the thermal field whereas the temprature reduces with rising values of Pr. 
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Fig. 4  Impact of �	on entropy generation   Fig. 5  Effect of � on Bejan number 
 
Basically, a rise in Pr imlies low thermal diffusion, hence, a fall in the thermal boundary layer thickness and in 
response reduces the temperature. On the other hand, Fig. 7 denmonstrates that the entropy generation rises with rising 
values of Pr. This occurs since the temperature gradients advances due to a rise in Pr across the boundary layer. 
Meanwhile, the Bejan number number falls with increasing values of Pr as displayed in Fig. 8.  

 
  

Impact of �	&	��	Temprature field   Fig. 7  Effect of �� on entropy generation 
 

The implication of this is that the magnetic field intensity and the viscous dissipation due to friction in the fluid 
particles take dominant position in the total production of entropy.. These behaviours tally with the report of Afridi et 
al. (2017). 
The plot of the entropy production versus the dimensionless temperature diffrence Ω is described in Fig. 9. Evidnetly, 
rising values of Ω helps to lower the entropy production thereby prevent loss of energy in the system. At the same 
time, rising values of Ω ensures that heat transfer irreversiblity is stronger than that of fluid friction and magnetic field 
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intensity in the total entropy production. This is because there is a reduction in the Bejan number for increasing values 
of Ω as shown in Fig. 10. 

 
 
Fig. 8  Variation of Pr on Bejan number         Fig. 9Effect of Ω on entropy generation 
 
The influence of Eckert number on the entropy production is depicted in Fig. 11. It is shown that with rising values of 
Ec, the entropy generation rate is increasing. This is so because of there is a friction between the fluid particles which 
enhances the skin friction coefficient and at such the rate of entropy generation rises. To achieve the aim of the second 
law therefore, Ekert number should be reduced 
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Fig. 10 Impact of Ω on Bejan number  Fig. 11 Effect of Ec on entropy generation 
 

5.0  Conclusion 
This study has reported numerically the problem of entropy production in an electrically conducting and dissipative 
micropolar fluid moving along an inclined permeable sheet which stretches nonlinearly in the flow direction. The 
governing equations have been translated to ordinary diffrential equations by means of similarity transformations 
while the resulting equations are solved by the use of shooting techniques in company with Runge-Kutta algorithm. 
The imapct of main physical parameters have been presented through various graphs while the validation of results 
obtained showed a good agreement with related exixting work in literature in the limiting conditions. The following 
points have been deduced from this study:   
 

 The use of micropolar fluid reduces the entropy production especially near the wall of the strtching sheet 
whereas the rising values of Eckert and Prandtl numbers enhance the production rate of entropy. 

 The irreversibility due to fluid friction and magnetic field strength dominate that of heat transfer 
irreversibility with increase in tha magnitude of micropolar, Prandtl and temperature difference parameters. 

 There is fall in the velocity profiles with rising values of magnetic field parameter �	due to Lorentz force 
whereas the temperature field declines for higher values of Prandtl number ��. 

 The rate of heat transferis boosted with growing values of surface temperature parameter � while the the skin 
friction coefficient also develops as the magnitude of the nonlinear stretching parameter � advances.  
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