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ABSTRACT 
 
This research shows that using an Artificial 
Neural Network as the hardware branch 
predictor of a superscalar microprocessor leads 
to performance as good as standard branch 
predictors for comparable chip area. The results 
were obtained running several Spec95 
benchmarks on an augmented version of the 
simple-scalar architecture simulator. The 
approach taken in this research is an attempt to 
use Neural Networks to improve the design of 
hardware branch predictors. It points to a 
combination of static and dynamic techniques 
using artificial intelligence. The prediction rates 
achieved by the holistic-non-adaptive Neural 
Network (NN) predictor designed are promising. 
Even a simple Neural Network structure without 
an on-line adaptive mechanism performed better 
than current techniques for small predictor sizes. 
The neural net predictor achieved almost the 
same rates for most of the benchmarks of the 
Spec95 set and it was even 20% more accurate 
for one of them.  
 
However, the NN predictors developed were not 
able to achieve the same prediction rates as 
bigger standard predictor configurations. The 
performance of the non-adaptive NN predictors 
substantially decreases when the number of 
dynamic branches in the benchmark increases, 
showing that the dynamic characteristic of the 
benchmarks negatively affects the behaviour of 
the non-adaptive Neural Network predictor. This 
indicates that in order to increase the prediction 
rate in highly dynamic programs it would be 
necessary to incorporate an adaptive 
mechanism, to yield Neural Network predictors 
competitive with the larger standard 
configurations.  
 
The method used in this study was to train an 
Artificial Neural Network on the dynamics of 
programs, and particularly conditional branch 
instructions, when they are being executed in a 

microprocessor. After training the Neural 
Network on traces of programs, it was 
implemented in the simulator to replace the 
existing standard predictor. In order to achieve 
better CPU performance, many schemes of 
branch prediction have been utilized. These 
schemes sometimes can be categorized as 
program-based predictors vs. profile based 
predictors, or static vs. dynamic schemes. This 
paper focuses on the study of the dynamic 
branch predictors since the dynamic approach of 
branch prediction has been developed much 
more than the static approach of branch 
prediction. However, their performances always 
have new and interesting discoveries based on 
different benchmarks and architectures.  
  

(Keywords: neural network, branch prediction, 
superscalar microprocessor, benchmarks) 

 
 
INTRODUCTION 
 
The Artificial Neural Network learns about the 
dynamics of programs when they are being 
executed in a microprocessor, and then it is 
implemented in the microprocessor as its branch 
predictor. 
 
The number of integrated circuits (ICs) in a 
microprocessor is growing at an enormous rate 
and how to use all those ICs is a topic of much 
debate. The number and specialization of the 
execution units in the microprocessor pipeline 
are increasing. As a result, out-of-order 
instruction processing is standard practice.  
 
Since so many instructions are being fetched 
and executed out-of-order, when a branch 
instruction is encountered, it is important that the 
next instruction fetched is really the instruction 
that would be fetched if the correct answer to the 
branch decision was already known (at least two 
clock cycles are needed in order to process a 
branch instruction and calculate the branch 
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decision). If the wrong path is chosen, then 
instructions start being executed that should not 
be executed and the microprocessor will have to 
recover from executing those invalid instructions. 
Therefore, it is imperative to have a good branch 
predictor.  
 
Artificial Neural Networks (ANNs) are becoming 
more useful in the areas of pattern recognition 
and prediction. ANNs are starting to be used 
alongside standard statistical prediction models 
used for years in the fields of finance and 
marketing. The ANNs are performing as well as, 
if not better than, the statistical models [38]. 
Because of their success in these fields, an 
Artificial Neural Network might perform well as a 
microprocessor branch predictor.  
 
The goal of this paper was to obtain a working 
simulation to compare a neural network branch 
predictor with current branch prediction 
technology. In order to achieve that goal, four 
tasks were established: 
 
1) Develop an Artificial Neural Network 
 
2) Modify the Simple-Scalar simulator to 

accept an ANN branch predictor 
 
3) Train the Neural Network 
 
4) Evaluate the ANN branch predictor:  
 
 

 
BRANCH PREDICTION 
 
According to Schlansker et al., “branch 
prediction is the process of correctly predicting 
whether branches will be taken or not before 
they are actually executed” [1]. Branch 
prediction is a fundamental factor for achieving 
high performance in today’s microprocessors, 
since in regular programs 1 of every 3 to 5 
instructions is a branch instruction [16]. Correctly 
predicting a branch will avoid wasting clock 
cycles waiting for the result of a branch 
destination calculation to become available, and 
in that way they help to keep the processor 
pipelines as busy as possible by fetching 
instructions from the predicted branch 
destination.  
 
Modern microprocessors use more internal 
parallelization and added functionality for 
increasing microprocessor throughput, which 

puts a high demand on the provision of useful 
instructions to execute. 
 
If the microprocessor does not implement a 
branch prediction mechanism, pipeline stalls will 
happen. When a conditional branch is decoded, 
the information that is required to know its 
outcome might be not available. The branch 
condition can be the result of an instruction 
depending on others waiting to be computed. 
Until the branch condition is known, the 
processor cannot issue more instructions.  
 
To overcome this obstacle, the processor must 
predict the outcome of branches, that is, predict 
the result of the branch condition before it is 
executed. It must also implement a mechanism 
to speculatively fetch the instructions along the 
predicted path. These instructions are issued 
and executed before the branch condition is 
determined. Therefore, if the prediction is 
correct, the processor can keep working without 
stalls. In the case that the prediction is wrong, 
the processor needs to discard all the 
instructions incorrectly fetched, issued, and 
executed. This situation is called a branch 
misprediction, and the clock cycles wasted on 
restoring the correct processor’s state are called 
the branch misprediction penalty. 
 
 
Two-level Branch Predictors 
 
In this method, two bits are used to keep track of 
the prediction history. Only after two consecutive 
mispredictions is the prediction state changed 
from predict taken to predict not taken. Figure 1 
shows how this is achieved in a state diagram. 

 
                               

 
 
 Figure 1: Two-Bit Prediction Method States. 
 



While this method provides fairly good prediction 
accuracy, it is still not as ideal as current 
technology needs, nor as good as current 
technology can provide. 
 
Among the current dynamic techniques, two-
level branch predictors have been shown to be 
one of the best mechanisms to predict the 
outcome of conditional branches. A typical two-
level branch predictor configuration has one 
level that generates an index, which is then used 
in the second level to access a table containing 
information about the history of branches. The 
table is called the Pattern History Table (PHT). 
 
Each entry in the table contains information 
about the previous behavior of the branches 
mapped to it. The indexing function is based on 
the address of the current branch to be predicted 
and a register called the Branch History Register 
(BHR), which keeps track of the outcome of the 
most recent branches.  
 
There are several variations of the two-level 
branch predictor scheme, depending upon how 
the PHT is organized, what information is stored 
in it, and what information is used to index its 
content. The different combinations can index 
the PHT using history kept globally for a set of 
addresses or for individual addresses. The PHT 
can contain a two-bit saturating counter or a 
fixed 1-bit prediction in each cell. This class of 
predictors often requires large and costly tables.  
 
The gshare predictor is a scheme that attempts 
to reduce the amount of hardware needed by 
combining the address information and the BHR 
register. It performs an XOR operation 
(exclusive or operation) between the BHR 
register and the branch address, and the result 
is then used to index the PHT. This scheme has 
a limitation; it increases interference in the 
pattern history table. [3]. 
 
The prediction is obtained based on dynamically 
stored information related to the branch to be 
predicted, its previous outcomes, the previous 
outcomes of the most recent branches, or any 
other architectural information available at the 
time of making the prediction. Table 1 
summarizes the different configurations for two-
level adaptive branch predictors according to its 
organization. 

 
 
 

 
Table 1: Two-Level Adaptive Predictor’s 

Combinations. 
 

History Kept Table Content 

Globally (G) 2-bit Saturating 
Counters (A) 

For a Set of 
Addresses (S) 

Fixed Prediction 
(S) 

Individual 
Addresses (P) --- 

 
 
Selected Predictor Configurations 
 
The structures of some particular configurations 
to be used as the base of proposed predictor are 
illustrated below. The predictors selected for this 
study were examined because they are 
variations of the Two-Level Adaptive Branch 
Predictors which have been researched, 
implemented and improved in many previous 
studies [3]. 

 
 

The GA Predictor 
 
In the architecture known as Global Address 
(GA) predictor (Figure 2), the PHT has its rows 
indexed by the BHR and its columns indexed by 
the branch address. The BHR is an n-bits wide 
register used to address the rows of the PHT, 
which contains information about the behaviour 
of the (n) most recently executed branches. The 
columns are indexed by the (j) lower bits of the 
branch address, where the number of columns 
of the PHT determines (j). 
 
  

 
Figure 2: Schematic of GA predictor. 
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The Gshare Predictor 
 
Figure 3 shows another approach called the 
gshare predictor. This scheme reduces the 
amount of hardware needed by combining the 
address information and the BHR register. The 
operation between the BHR and the branch 
address is an XOR function; the result of this 
operation is then used to address the rows of a 
single column PHT. As mentioned before, this 
scheme has a limitation; it increases interference 
in the pattern history table.  

 
                                                

 
Figure 3: Schematic of a gshare Predictor. 

 
 
The PA Predictor 
 
Another approach is the one known as Per 
Address (PA) predictors. This scheme, shown in 
Figure 4, uses information about the previous 
behaviour of the branch to be predicted to 
address the rows of the PHT. The information is 
stored in a table (BHRs) addressed by the 
current branch address. The output of this table 
is then used to index the PHT. 
 
                                          

 
Figure 4: Schematic of Per–Address 

              Predictor. 
 
 

                                      
Hybrid Predictors 
 
Hybrid branch predictors combine several 
prediction strategies into a single predictor; 
these predictors use a mechanism for selecting 
the best predictor for a given branch. What a 
hybrid branch predictor scheme does is to 
decide which registers are important for every 
different type of branch. A comparison of 
different combinations of single-scheme 
predictors is presented in [3], which shows the 
misprediction rates for each scheme with six 
different predictor sizes, varying from 8KB to 
256KB. The single-scheme predictors used in 
that study are gshare, PA, a single column PHT 
indexed with the branch address, and a static 
branch predictor.  
 
For all the predictors and their possible 
combinations, the misprediction rate was 
obtained and compared. The misprediction rates 
given were the average of the rates achieved for 
the six SPECint92 benchmarks [3]. Their results 
showed that for every different predictor size the 
ordering of the predictor class combinations was 
the same. The gshare/PA combination achieved 
the lowest misprediction rate which was on 
average 13% lower than that of its closest 
competitor, gshare/static. The best single-
scheme predictor at all levels of cost was gshare 
[3]. 
 
The gshare/PA was the only combination of 
single-scheme predictors able to obtain a benefit 
of both types of correlation between branches.  
 
The two types of correlation are the correlation 
between the last branch outcomes and the 
branch to be predicted, and the correlation 
between previous outcomes of the current 
branch and itself.  
 
The gshare component predicts more accurately 
branches whose outcomes are dependent on 
the outcomes of other static branches, and the 
PA component predicts more accurately 
branches whose outcomes are dependent on 
previous outcomes of the same static branch [3]. 
Since this predictor achieved the highest 
performance, we can infer that both types of 
history information are critical for achieving high 
levels of accuracy. 
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MICROPROCESSOR ARCHITECTURE 
 
To understand the importance of branch 
prediction, an examination of the overall 
microprocessor must be done. Most 
microprocessors today are of a superscalar 
design, meaning that they execute multiple 
instructions at once. Most current 
microprocessors share much in common with 
this superscalar architecture [33] the post-RISC 
architecture. Figure 6 [28] shows the generic 
layout of a Post-RISC processor pipeline. 
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Figure 6: The Post-Reduced Instruction Set 
Computer (RISC) Architecture. 

 
          
From examining Figure 6, there are six important 
steps in the processor pipeline. First, instructions 
are read from memory in the Pre-decode stage 
and stored into the Instruction Cache (I-Cache).  
 
In the superscalar architecture, multiple 
instructions are read into the cache at one time 
(for most current processors, four instructions 
are read [33].  
 

As a part of pre-decoding, extra bits are 
appended to the instructions in order to assist in 
decoding in a later stage. During the Fetch/Flow 
stage of the pipeline, instructions fetched from 
the  I-Cache are decided However, it is not until 
the third pipeline stage, the Decode/Branch 
stage, that a prediction on a branch instruction is 
actually made. At this point,” not taken” 
branches are discarded from the pipeline, and 
decoded instructions are passed on to the 
Instruction Dispatch and Reorder Buffer stage. 
In the Instruction Dispatch and Reorder Buffer 
stage, instructions are queued up and wait to 
move on to an available execution unit in stage 
five. Examples of execution units are load/store 
units, branch units, floating point units and 
arithmetic logic units. 
 
Which types and how many of each of these 
execution units are needed is decided by the 
designers of the microprocessor. At this point in 
stage five, after the appropriate calculations are 
done for a branch instruction, the Fetch/Flow 
stage of the pipeline is informed of branch 
mispredictions so that it can start recovering 
from mispredictions.  
 
The Branch/Decode stage is also informed of 
mispredictions so that it can update its prediction 
methodology (typically, updating of tables or 
registers). After an instruction is successfully 
executed it is sent on to the Completed 
Instruction Buffer (stage six) and the Retire Unit 
successfully updates the state of registers based 
on the completed instruction (usually at a rate 
equal to that of pre-decode stage instruction 
fetching).  
 
Instructions could be waiting in the Completed 
Instruction Buffer until information about a 
branch instruction becomes available so that 
they can be retired or erased. Figure 6 shows 
that branch prediction effects multiple stages of 
the pipeline. 
 
 
Simple-Scalar Software Architecture  
 
Simple-Scalar has a modular layout.  This layout 
allows for great versatility.  Components can be 
added or modified easily. Figure 7 shows the 
software structure for Simple-Scalar.  Most of 
the performance core are optional modules [29]. 
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Figure7: Simple-Scalar Software Architecture. 

 
 
Hardware Architecture 
 
The Hardware architecture of the Simple-Scalar 
simulator closely follows the Post-RISC 
architecture previously described. Figure 8 
shows the out-of-order pipeline for the Simple-
Scalar hardware architecture. 
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Figure 8: Out-of-Order Issue Architecture. 

  
                   
Superscalar Microprocessor Architecture Of 
PowerPC™ 603e Microprocessor. 
 
This presentation discusses techniques for 
optimizing instruction execution in a superscalar 
microprocessor architecture such as the 
PowerPC™ 603e microprocessor (Figure 9). 

     
 

Figure 9: Block Diagram of 603e. 
 
 
Instruction execution in a superscalar processor 
is enhanced by allowing the parallel execution of 
multiple instructions. In order to enable the 
maximum potential of most superscalar 
processors, one needs to be aware of their 
instruction flow and execution mechanisms. 
Optimal performance in a microprocessor can be 
attained by ensuring a continuous flow of 
instructions through the instruction pipeline.  
 
Being aware of the dependencies and 
constraints of the instruction flow mechanisms 
allows one to generate code that can most 
effectively and optimally take advantage of all 
the capabilities of a superscalar processor such 
as the PowerPC 603e microprocessor. The 603e 
is a low-power implementation of the PowerPC 
family of reduced instruction set computer 
(RISC) microprocessors. 
 
The 603e is a superscalar processor capable of 
issuing and retiring as many as three 
instructions per clock. Instructions can “execute” 
out-of-order for increased performance, but they 
“retire” in-order to ensure functional correctness 
and well-ordered behaviour. In this work, it is 
important to discuss the instruction flow 
mechanism of the PowerPC 603e 
microprocessor and then describe dependencies 
and constraints that should be avoided to reduce 
stalls in the instruction pipeline and maximize 
performance.   
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By closely examining the instruction flow 
mechanism of the 603e, a software developer 
will not only be able to optimize code for the 
603e, but will also be able to understand some 
of the general principles behind Superscalar 
microprocessors that can impact performance. 
 
  
ANNS USED IN THIS RESEARCH 
 
For the present research the structure of the 
neural net is kept as simple as possible. A 
simple NN used has an input layer with 40 
elements and a single processing element on 
the output layer. Slightly more complex 
examples add 10 and 20 elements in a hidden 
layer. While the data reported for this study used 
this simple feedforward structure, the 
implementation of other structures which would 
simplify the extraction of the PHT indexing 
function were also considered. 
 
The other NNs used were Learning Vector 
Quantization (LVQ) nets. The LVQ NN has one 
competitive layer (Kohonen layer) that performs 
the quantization and an output layer that 
performs the classification. Each element in the 
output layer is assigned an equal number of 
elements from the Kohonen layer.  
 
Figure 5 shows a diagram of an LVQ net. During 
training, every element in the Kohonen layer is 
presented with each entire input vector. The 
distance (di) of every PE’s weight vector (wij) to 
the input vector (x) is computed and the closest 
one is declared the winner. Euclidean distance is 
used to determine the distance between the 
input vectors and the weight values for a 
particular PE. 


 
 
Then if the PE is in the class of the input vector, 
it is moved closer to the input vector. If the 
winning PE is not in the class of the input vector, 
it is moved away from the input vector. This way, 
the PEs group together in regions associated 
with each class. 
 
During recall, the distance from the input vector 
to each PE is calculated and the closest PE is 
declared to be the winner. Then, the input vector 
is classified as belonging to the class 

corresponding to the winner PE. The two output 
classes are the not-taken branch (NT) and taken 
(T) branch. The NT class provides a 0, and the T 
class provides a 1 to the predictor’s output. The 
LVQ NNs used in this research has 128 and 256 
elements in the Kohonen layer and two outputs. 
                                      

INPUT
L AYE R

KOHONE N
L AYE R

OUT PUT
L AYE R

y  2

y1  

Xn

X2

X1

     
 
Figure 5: Learning Vector Quantization Neural 

Net. 
 
Neural Net Predictor 
 
The aim of the neural net (NN) is to find a better 
function for combining the information available 
to the predictor. The idea is to use a NN to find 
the optimal function to merge the information 
available in the microprocessor architecture to 
create a more accurate predictor. This function 
could then be implemented in the system. 
 
The methodology is to let the NN learn about the 
dynamics of programs, and particularly, 
conditional branch instructions, while they are 
being executed in a microprocessor. The 
available information consists of snapshots of all 
the registers involved in the prediction 
mechanism for every branch in the program, and 
during training, the correct outcome for the 
branch provided by a perfect theoretical 
predictor.  
 
The NN's task is to learn the function of the 
whole predictor. After training, the NN is to be 
studied to extract knowledge for use in designing 
hardware architecture of the predictor. Figure 10 
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shows a scheme of a possible prediction 
mechanism using a NN to implement the 
hardware predictor. This is the approach 
explored here. The PHT is included in the neural 
net architecture. 

 
 

NN

Branch address

predictionBHSRs

BHSR

 
 
Figure10: Schematic of predictor using a NN 

to implement the entire predictor 
 
 
The net is provided with all the dynamic 
information related to the current and previous 
branches that other schemes utilize. This way 
we let the NN decide which variables are 
important and which could be discarded. Hybrid 
branch predictors combine several prediction 
strategies into a single predictor; these 
predictors use a mechanism for selecting the 
best predictor for a given branch. All current and 
historical behaviour is available to the NN during 
training. Hence, the NN should be able to 
identify the information important to predicting 
each branch. This, in effect, implements an 
internal selection mechanism like that of a hybrid 
branch predictor. 
 
The dynamic data provided to the NN is created 
by tracing a compiled program. Hence, the NN 
will learn characteristics of one particular 
compiler and platform for which they were 
compiled. However, in order to keep the 
compiled program as generic as possible, the 
compiler used to create the binaries executed by 
the simulator is a generic compiler (gcc-2.6.3) 
run with standard switches [11]. 
 

 
The Simple-scalar Simulator 
 
A modification of the Simple-scalar Tool Set is 
used to perform the simulation of the 
microprocessor architecture. "This tool set 
consists of compiler, assembler, linker, 
simulation, and visualization tools for the Simple-
Scalar architecture" [7].  Simple-scalar is an 
execution-driven simulator; the architecture that 
it models is a close derivative of the MIPS 
architecture. In this research the out-of-order 
version of the simulator is used. The out-of-order 
issue processor simulated supports non-blocking 
caches, speculative execution, and implements 
several branch predictors [7]. 
 
 
Simulations Outline 
 
In the first part of the study the simulator was 
modified to extract snapshots of the state of the 
machine every time a conditional branch has to 
be predicted (see Figure 11).  
 
The snapshots consist of information about the 
branch to be predicted: its address, the contents 
of the global address branch history register 
(BHR), the contents of the per-address branch 
history register (BHRs), and the actual outcome 
of the branch. All the magnitudes are binary {0, 
1}. The branch address is 24 bits wide, the 
general and per-address history registers are 8 
bits wide each, and the output is 1 bit. The 
outcome of the branch is actually obtained in the 
cycle after the prediction, when the branch is 
executed. Instructions are internally executed at 
the dispatch stage, and not in the execute stage 
as in a real processor, due to the way that the 
simulator is implemented.  
 
The data obtained from the simulator was used 
to train the neural net. After training the neural 
net, it was implemented in the simulator as a 
predictor (see Figure 12). The routine called 
NNpredict is presented with data coming from 
the registers inside the processor simulator and 
the NN's output is presented to the processor as 
the direction prediction, replacing the complete 
direction prediction structure in the processor 
simulator. Running the modified simulator, we 
then obtained the run-time performance of the 
neural net predictor. 

The Pacific Journal of Science and Technology             –87– 
http://www.akamaiuniversity.us/PJST.htm                                                 Volume 8.  Number 1.  May 2007 (Spring) 



benchmarks

Inputs to the
predictor

Branch
outcome

Processor

L1
Trace file

Learning 1 file

Testing files

Learning 2 file

Training and
testing files

L2

1

2

3

 
                                                     

Figure11: Data Collection Scheme. 
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Figure 12: Integration of the Neural Net 

Predictor. 
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Data Files Creation      
 
The simulator was compiled and run on a 
SPARC Solaris 2. The benchmarks used are 
from the SPECint95 benchmarks set [21] using 
reference inputs. The eight benchmarks used 
are compress, gcc, go, ijpeg, li, m88ksim, perl 
and vortex.  
 
The results reported are based on the direction 
misprediction rate and compared to the ones 
achieved by different predictors for identical 
processor configurations. All the benchmarks 
are executed by the simulator and data traces 
are obtained for each one of them. Every line of 
the files created refers to a conditional branch 
executed by the processor.  
 
After approximately one million instructions, the 
predictor reaches a steady state and its 
accuracy stabilizes [20]. Therefore, capturing 
over one million instructions ensures that the 
resulting trace files contain transient and steady 
state information about the predictor behavior. 
Output files are created by executing four million 
instructions, this way all the benchmarks create 
output files with at least 300,000 lines, the 
selected amount of data for NN training. The 
number of branches to trace was selected 
because of the previous mentioned reasons and 
for practical file size reasons.  
 
The output files are split into 3 segments, to 
create 3 files of 100,000 lines each. The first set 
is the training-1 set, it contains the first 100,000 
instructions from the trace file, The second is the 
testing-set and the third is the training-2 set, 
containing the second and third 100,000 
instructions respectively. Since there are eight 
benchmarks, each file contains 800,000 training 
samples. 
 
The data format for the training and 
generalization set files is that of NeuralWorks 
input (.nna) files. The first section of the record 
contains all the bits which are the content of the 
address and branch history registers, plus a 
prediction bit which is the prediction of the 
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standard two-level predictor included in the 
simulator. The second part of the record 
contains the desired network output value, in this 
case the real outcome of the branch, which can 
be not taken (‘ 0’) or taken (‘ 1’). The records are 
all ASCII. 
 
The frequency distributions of the 2 branch 
outcome classes for these files are: 
 
Training-1 set: 
 

File               Not-Taken branch       Taken branch 
L_compress 29283 29.3% 70717 70.7% 
L_gcc 44435 44.4%   55565 55.6% 
L_go 44925 44.9% 55075 55.1% 
L_ijpeg 58273 58.3% 41727 41.8% 
L_li 47875 47.9% 52125 52.1% 
L_m88ksim 27347 27.4% 72653 72.7% 
L_perl 53006 53.0% 46994 47.0% 
L_vortex 29430 29.4% 70570 70.6% 
L1 334574 41.8% 465426 58.2% 

 
 
Training-2 set: 
 

File               Not-Taken branch       Taken branch 
L2_compress  6213 56.2% 43787 43.8% 
L2_gcc 41383 41.4% 58617 58.6% 
L2_go 21883 21.9% 78117 78.1% 
L2_ijpeg 59954 60.0% 40046 40.0% 
L2_li 55455 55.5% 44545 44.5% 
L2_m88ksim    49219 49.2% 50781 50.8% 
L2_perl 50729 50.7% 49271 49.3% 
L2_vortex 36361 36.4% 63639 63.6% 
L2 371197 46.4% 428803 53.6% 

 
 
Testing set: 
       

File                Not-Taken branch      Taken branch 
T_compress  55998 56.0% 44002 44.0% 
T_gcc 53470 53.5% 46530 46.5% 
T_go 21921 21.9% 78079 78.1% 
T_ijpeg 59940 59.9% 40060 40.1% 
T_li 52485 52.5% 47515 47.5% 
T_m88ksim 48029 48.0% 51971 52.0% 
T_perl 56137 56.1% 43863 43.9% 
T_vortex 31874 31.9% 68126 68.1% 

 
 
Training Procedure 
 
For both types of nets, it is necessary to adjust 
the I/O parameters to fit the input (.nna) files. 
Under the I/O menu in parameters, we find the 
following parameters: The input field start is 1, 

and the output field start is 42 for the back-
propagation nets and 43 for the LVQs. The 
network ranges are 0.00 to 1.00 for both input 
and output since all the magnitudes are binary 
bits. Learning and recall are read from a file in 
sequential order, since the randomized reading 
option cannot be used with the size of the files 
used in this research.  
 
The back propagation nets are trained on 
L1.nna and L2.nna for 1, 2, 3 and 4 passes over 
the training file. That is, 800,000, 1,600,000, 
2,400,000 and 3,200,000 iterations. The LVQ 
nets are trained on the same files, but the 
number of iterations is: (1) 800,000 for LVQ1 
plus 100,000 for LVQ2. (2) 1,600,000 for LVQ1 
plus 100,000 for LVQ2. (3) 3,200,000 for LVQ1 
plus 100,000 for LVQ2 and (4) 4,000,000 for 
LVQ1 plus 1,000,000 for LVQ2.  
 
The training procedure takes between two and 
fourteen hours (computer running time), 
depending on the size of the NN, the amount of 
pairs presented to it, and its architecture. 
 
 
RESULTS 

 
Neural Networks Training Comparison 
 
The neural network simulator used in this project 
is NeuralWorks Professional II/Plus®, of 
NeuralWare, Inc. It provides a classification rate 
table containing the classification rate for each 
class and an average of the classification rates 
over the different classes. The classification rate 
can be defined for a given class, as the number 
of correct answers divided by the total number of 
pairs provided, in that class.  
 
We can see from Figure 13 that for some of the 
NNs, the average classification result on the test 
files is higher than the classification result on the 
training file. This is because the training file is 
composed of fractions of the eight different trace 
files and the transitions between benchmarks 
during learning cause high errors. We can also 
see that the NNs that achieved high 
classification results during training did not 
generalize well, that is they did not perform as 
well on the test files. The networks tested are: 
 
Backpropagation: Input layer: 40 elements; 
hidden: 0, 10 and 20; output: 1 
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LVQ: Input layer: 40 elements, Kohonen: 128 
and 256; output: 2 
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Figure 13: Classification results for the best 

NNs.            
 
 

Table 2 summarizes the best nets based on the 
average testing classification rate. Figure 13 
shows the learning and average testing 
classification rates for those best nets. 
            
                                   

  
 

Table 2: Classification Results from 
NeuralWorks for the best NNs. 

 
 
Simulator Prediction Accuracy Results 
 
Tables 3, 4, and 5 show the prediction rates 
achieved by the standard and the NN predictors 

for each one of the eight benchmarks and the 
arithmetic mean for each predictor.  
 
Table 3 compares the prediction rates achieved 
by different configurations of standard predictors 
and the two best NN predictors. These values 
are the prediction rates achieved only for those 
branches that actually use the direction predictor 
that is conditional branches. The prediction rates 
are obtained from the trace files obtained when 
running the benchmark programs, they are not 
the prediction rates reported by the simulator 
(which include all branches executed by the 
processor). Before showing a performance 
comparison, the results for different standard 
predictors and NN predictors are presented. 
 

    
Table 3: Prediction Rates for the Standard 

Predictors Tested. 
 
            

Standard Predictors Tested 
 
Table 3 shows the prediction rates achieved by 
the different standard predictor configurations. 
Figure 14 shows the average prediction rates for 
the different configurations. 
 
The GA1K and GA16K predictors are global 
address two-level branch predictors whose level-
1 table has 1 entry and PHT has 1024 and 
16384 entries respectively. 
 
The PA4K and PA64K are two-level branch 
predictor whose level-1 table has 4 and 8 entries 
and its PHTs have 4096 and 65536 entries 
respectively. 
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The gshare1K and gshare16K predictors are 
gshare predictors whose PHT has 1024 and 
16384 entries respectively, its level-1table has 1 
entry and the XOR flag is turned on. 
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Figure 14: Average Prediction Rate for the 
Different Standard Predictor Configurations. 

 
 
Neural Net Predictors Tested 
 
The first part of the name is the training file used 
(L1, L2), the second part is the type of net (bkp 
or LVQ), and the third part is the number of 
elements in the different layers of the net. 
 
L1 bkp40-1: back propagation network trained 
for 2,400,000 iterations on L1.nna 
 
L2 bkp40-1: back propagation network trained 
for 800,000 iterations on L2.nna 
 
L1 bkp40-10-1: back propagation network 
trained for 3,200,000 iterations on L1.nna 
 
L2 bkp40-10-1: back propagation network 
trained for 3,200,000 iterations on L2.nna 
 
L1 bkp40-20-1: back propagation network 
trained for 3,200,000 iterations on L1.nna 
 
L2 bkp40-20-1: back propagation network 
trained for 3,200,000 iterations on L2.nna 
 
L1 LVQ40-128-2: LVQ network trained for 
5,000,000 iterations on L1.nna 

L1 LVQ40-256-2: LVQ network trained for 
5,000,000 iterations on L1.nna 
 
L2 LVQ40-256-2: LVQ network trained for 
5,000,000 iterations on L2.nna 
 
Tables 4 and 5 show the prediction rates 
achieved by the different NN predictors. Figure 
15 shows the average prediction rates over the 
benchmarks set for the different predictors.      
                    
                                   

Table 4: Back-propagation NNs Prediction 
Rates. 

 

      
         

                                                                  
 
      Table 5: LVQ NNs Prediction Rates.  
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NN Predictors

Nns Comparison

   
 

Figure 15: Average prediction rate for the NN 
predictors comparison  

 
 

Performance Comparison 
 
Figure 16 shows a comparison of average 
prediction rate for the NN predictors. The NN 
predictors are only compared to the small size 
standard predictors, not only because they were 
trained on traces of data created by predictors of 
similar size, but also because the estimated 
implementation size would be comparable.  
 
There are several different ways to implement a 
neural network in a chip. "Implementations 
include digital, analog, and hybrids while the 
network architectures include layered networks 
with feed forward processing, fully 
interconnected recurrent networks, single layer 
winner-take-all networks, radial basis functions, 
etc. Some have on-chip learning while others 
may have no learning capability and only 
execute fast recall processing" [17]. For the type 
of neural networks used in this research, a 
hybrid/analog implementation is the most 
appropriate. Using this type of implementation, a 
processing element usually implies a small 
number of transistors comparable to the number 
than a static memory cell would require [26].  
 
The weights of the neural network do not require 
additional hardware, because they are 
embedded in the transistor geometry. Therefore, 

the size of the neural network implemented in 
the chip would be smaller than the standard 
predictors used in the comparisons. Table 6 
contains the prediction rate for the best NN 
predictors (bkp40-10-1 and bkp40-20-1) and the 
standard predictors; the benchmarks are sorted 
in the table according to their percentage of 
dynamic branches. Figure 17 shows the 
prediction rate of the best NN predictor versus 
the percentage of branches in the benchmark. 
                
                           

 
Figure 16: Average Prediction Rate of the NN 

Predictors.  
               
                                                                                           

Table 6: Best NNs and Standard Predictors 
Comparison. 

 

 
 
Retraining the Best NNs with Bigger 
Predictor Sizes 
 
In order to make a fair comparison of the NN 
predictors against the standard predictors with 
bigger tables, it was necessary to retrain the 
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NNs. The best two NN configurations were 
retrained on a new set of data created with a 
new predictor configuration. The new 
configuration has 128 entries in the BHSR table 
and a PHT with 65536 entries. The eight 
benchmarks in the set were run with this 
configuration and traces of them were collected 
and processed. The training file was created 
with the L2 set that is, with the third 100,000 
lines of the trace files for each benchmark. The 
test files were created with the second 100,000 
lines of the traces. 
 

 
 

Figure 17: NN Predictor Performance vs. 
Percentage of Branches. 

 
 
A new NN was also trained on the new training 
file. Since the resources used for the standard 
predictor changed from a few kilobytes to 64 
kilobytes, this new NN was given 200 elements 
on the hidden layer instead of 10 or 20 as in the 
previous case. 
 
T642_compress.nna second 100,000 pairs of      
compress’ output 
 
T642_gcc.nna second 100,000 pairs of 

gcc’s output 
 
T642_go.nna           second 100,000 pairs of 

go’s output 
 
T642_ijpeg.nna       second 100,000 pairs of 

ijpeg’s output 
 
T642_li.nna             second 100,000 pairs of 

li’s output 

T642_mksim.nna    second100,000 pairs of 
m88ksim’s output 

 
T642_perl.nna         second 100,000 pairs of 

perl’s output 
 
T642_vortex.nna     second 100,000 pairs of      

vortex’s output 
 
L12864.nna   800,000 pairs from the 

L2_ files 
 
The NNs selected for retraining were 
backpropagation nets with 10 and 20 elements 
in the hidden layer (bkp40-10-1 and bkp40-20-
1), and the new NN has 200 elements in the 
hidden layer. The NNs were trained for 
3,200,000 iterations on the L12864.nna file. 
Table 7 shows the prediction rates achieved by 
the NN predictors. Figure 18 shows the average 
prediction rate over the benchmarks set. 
 
Table 7: Prediction Rates from NeuralWorks for 

the Best NNs bkp. 

 
    
                       

 
 

Figure 18: Average prediction rates over the 
benchmarks set 
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Then the code for these NNs was extracted and 
integrated into the simulator to obtain the 
prediction rates. The simulator was run for 
1,000,000 instructions on each benchmark. 
Table 8 shows the prediction rates achieved by 
the different NN predictors. Figure 19 shows the 
average prediction rates  NN predictors. 
 
Table 8: Back-propagation NNs bkp Prediction 

Rates. 
 

 
 
 
 

 
 

Figure 19: Average Prediction Rate of the NN 
and Standard Predictors Over the Benchmarks 

Set. 
 
 

The approach taken to use the added resources 
was increasing the number of neurons in the 
hidden layer. Another approach could be adding 
neurons in the input and/or output layer acting 
as delay elements, providing this way the NN 
with local memory. 
 
 
Results Analysis 
 
As can be seen in the comparisons (Table 6), 
the best of the neural net predictors (bkp40-10-
1) performs better than the other techniques, for 
small predictor sizes, even without an adaptive 
mechanism. For bigger predictor sizes, the 

standard techniques outperform the non-
adaptive NN predictors. It can be seen in Table 
6 and Figure 17 that the performance of the NN 
predictors decreases when the number of 
dynamic branches in the benchmark increases. 
This shows that the high percentage of branches 
in the benchmarks negatively affects the 
behaviour of the non-adaptive NN predictor. 
 
The non-adaptive characteristic of the NN 
predictor affects its performance in benchmarks 
like compress, which has the highest number of 
dynamic branches as compared to the other 
benchmarks. The benchmark gcc when run for 
1,000,000 instructions executes 228,814 
conditional branches; that is, a 23% of the 
instructions executed are conditional branches 
that have to be predicted (Table 6).  
 
Studying the output file created by the 
benchmark gcc, we can see that among those 
228,814 conditional branches, 44,637 unique 
combinations of branch address and history 
registers are involved, that is 19.50%. In 
contrast, the benchmark ijpeg for 1,000,000 
instructions executed executes only 142,794 
(14.28%) conditional branches, with only 1,040 
unique combinations (0.72%). For this 
benchmark, the best of the neural net predictors 
achieved a prediction accuracy of 98.54%, which 
is 20% higher than the highest achieved by 
current techniques. 
 
This reinforces the idea that the next step to 
improve the performance of the NN predictors 
for all cases is not increasing the size, but 
adding an adaptive mechanism to them. The 
adaptive mechanism could be either an online 
refinement of the predictor's design or more 
support hardware to assist the NN predictor. 
Once the adaptive predictor is designed and 
tested, its implementation in hardware can be 
studied.                  
 
 
CONCLUSION 
 
Modern microprocessors use high internal 
parallelization and added functionality for 
increasing microprocessor throughput, which 
puts a high demand on the provision of useful 
instructions to execute. Correctly predicting a 
branch in the instruction flow will avoid wasting 
clock cycles waiting for the result of a branch 
destination calculation to become available. This 
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keeps the processor pipelines as busy as 
possible by fetching instructions from the 
predicted branch destination.  
 
The processor must correctly predict the 
outcome of branches, because in the case that 
the prediction is wrong, the processor needs to 
discard all the instructions incorrectly fetched, 
issued, and executed. Even if current dynamic 
techniques achieve prediction accuracies in the 
order of 85%-90%, a misprediction rate of 10% 
is too high for the wide and deep pipelines 
present in almost all the microprocessors. 
Moreover, if we can increase the accuracy e.g. 
from 90% to 92% we are decreasing the 
misprediction from 10% to 8% that is a 20% 
improvement in the misprediction rate. 
  
Several static and dynamic approaches have 
been designed and tested [3]. The approach 
taken in this research points to a combination of 
both techniques. The methodology is to let an 
Artificial Neural Network learn about the 
dynamics of programs, and particularly, 
conditional branch instructions, when they are 
being executed in a microprocessor. After 
studying the standard hardware-predictor 
configurations, two-level branch predictors were 
selected.  
 
There are more complex and accurate branch 
predictors, but they are usually a modification of 
the basic structures [3]. The information 
available to the predictor consists of snapshots 
of all the registers involved in the prediction 
mechanism for every branch in the program, and 
during training, the correct outcome for the 
branch is provided by a perfect theoretical 
predictor.  
 
All current and historical behavior are available 
to the NN during training, as it is provided with 
all the dynamic information related to the current 
and previous branches that other dynamic 
schemes utilize. The NN's task is to learn the 
function of the whole predictor. After training, the 
NN is to be implemented in the simulator to 
replace the standard predictor implemented in it. 
This is a pseudo-dynamic implementation 
because even if the predictor is simulated online, 
it is trained offline with traces of programs and it 
doesn't dynamically gather information from the 
current program being executed. 
 
 

Implementation of the Neural Network 
Predictor and Testing 
 
After training the neural nets, they were 
implemented in the simulator as the predictor. 
The routine called NNpredict contains NN code. 
It is presented with data coming from the 
registers inside the processor simulator and its 
output is supplied to the processor as the 
direction prediction, replacing the complete 
direction prediction structure in the processor 
simulator. Running the modified simulator, the 
run-time performance of the NN predictors were 
obtained. These values are the prediction rates 
achieved only for those branches that actually 
use the direction predictor, that is, conditional 
branches. 
 
Several of the trained NNs were implemented in 
the simulator and tested as well as standard 
predictor configurations. The size of the neural 
network implemented in the chip would be 
smaller than the standard predictors used in the 
comparisons.  
 
In order to make a fair comparison of the NN 
predictors against the standard predictors with 
bigger tables, it was necessary to retrain the 
NNs. The best two NN configurations were 
retrained on a new set of data created with a 
new predictor configuration. The prediction rates 
achieved by the NN predictors are lower than 
the ones achieved by the standard predictors, 
even the new NN with more elements couldn't 
achieve the high rates that the standard 
predictors achieved. 
 
Even without an adaptive mechanism, the best 
of the neural net predictors performs better than 
the small standard predictors. For bigger 
predictor sizes, the standard techniques 
outperform the non-adaptive NN predictors. It 
can also be seen on the comparison that the 
performance of the NN predictors decreases 
when the number of dynamic branches in the 
benchmark increases. The focus of this research 
was evaluating the improvement that can be 
achieved by using a neural network to predict 
the outcome of branches.  
 
Adaptive mechanism 
 
The non-adaptive characteristic of the NN 
predictor used in this research affects its 
performance in benchmarks like gcc, which has 
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the highest number of dynamic branches as 
compared to the other benchmarks, reducing 
dramatically the overall performance. As can be 
seen in Table 8 (back-propagation NNs 
prediction rates), the standard techniques 
outperform the non-adaptive NN predictors for 
bigger predictor sizes, showing that an adaptive 
mechanism is needed instead of an increase on 
the predictor's size. The adaptive mechanism 
could be either an online refinement of the 
predictor's design or more hardware support to 
assist the NN predictor. 
 
Together with developing an adaptive 
mechanism, the implementation of the NN 
predictor in hardware has to be studied. The 
type of implementation chosen for the predictor 
will highly affect the design of the adaptive 
mechanism. This is one of the reasons why the 
present research does not go further in respect 
of the design of the on-line adaptive mechanism. 
 
A design consideration for the adaptive NN 
predictor would be the initial state of its weight 
values. The weights can start with the values 
assigned to the offline trained NN or they can be 
randomly initialized. Experiments carried out in 
this research do not clearly show if the weights 
of the offline-trained NN are good initial values 
for a new training or not.  
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