
Application of Neural Network to Improve Dynamic Branch Prediction
of Superscalar Microprocessors

P.B. Osofisan, Ph.D.* and O.A. Afunlehin, M.Sc.(Eng.)

Department of Electrical and Electronics Engineering

University of Lagos, Akoka, Lagos, Nigeria

ABSTRACT

This research shows that using an Artificial
Neural Network as the hardware branch
predictor of a superscalar microprocessor leads
to performance as good as standard branch
predictors for comparable chip area. The results
were obtained running several Spec95
benchmarks on an augmented version of the
simple-scalar architecture simulator. The
approach taken in this research is an attempt to
use Neural Networks to improve the design of
hardware branch predictors. It points to a
combination of static and dynamic techniques
using artificial intelligence. The prediction rates
achieved by the holistic-non-adaptive Neural
Network (NN) predictor designed are promising.
Even a simple Neural Network structure without
an on-line adaptive mechanism performed better
than current techniques for small predictor sizes.
The neural net predictor achieved almost the
same rates for most of the benchmarks of the
Spec95 set and it was even 20% more accurate
for one of them.

However, the NN predictors developed were not
able to achieve the same prediction rates as
bigger standard predictor configurations. The
performance of the non-adaptive NN predictors
substantially decreases when the number of
dynamic branches in the benchmark increases,
showing that the dynamic characteristic of the
benchmarks negatively affects the behaviour of
the non-adaptive Neural Network predictor. This
indicates that in order to increase the prediction
rate in highly dynamic programs it would be
necessary to incorporate an adaptive
mechanism, to yield Neural Network predictors
competitive with the larger standard
configurations.

The method used in this study was to train an
Artificial Neural Network on the dynamics of
programs, and particularly conditional branch
instructions, when they are being executed in a

microprocessor. After training the Neural
Network on traces of programs, it was
implemented in the simulator to replace the
existing standard predictor. In order to achieve
better CPU performance, many schemes of
branch prediction have been utilized. These
schemes sometimes can be categorized as
program-based predictors vs. profile based
predictors, or static vs. dynamic schemes. This
paper focuses on the study of the dynamic
branch predictors since the dynamic approach of
branch prediction has been developed much
more than the static approach of branch
prediction. However, their performances always
have new and interesting discoveries based on
different benchmarks and architectures.

(Keywords: neural network, branch prediction,
superscalar microprocessor, benchmarks)

INTRODUCTION

The Artificial Neural Network learns about the
dynamics of programs when they are being
executed in a microprocessor, and then it is
implemented in the microprocessor as its branch
predictor.

The number of integrated circuits (ICs) in a
microprocessor is growing at an enormous rate
and how to use all those ICs is a topic of much
debate. The number and specialization of the
execution units in the microprocessor pipeline
are increasing. As a result, out-of-order
instruction processing is standard practice.

Since so many instructions are being fetched
and executed out-of-order, when a branch
instruction is encountered, it is important that the
next instruction fetched is really the instruction
that would be fetched if the correct answer to the
branch decision was already known (at least two
clock cycles are needed in order to process a
branch instruction and calculate the branch

The Pacific Journal of Science and Technology –80–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

The Pacific Journal of Science and Technology –81–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

decision). If the wrong path is chosen, then
instructions start being executed that should not
be executed and the microprocessor will have to
recover from executing those invalid instructions.
Therefore, it is imperative to have a good branch
predictor.

Artificial Neural Networks (ANNs) are becoming
more useful in the areas of pattern recognition
and prediction. ANNs are starting to be used
alongside standard statistical prediction models
used for years in the fields of finance and
marketing. The ANNs are performing as well as,
if not better than, the statistical models [38].
Because of their success in these fields, an
Artificial Neural Network might perform well as a
microprocessor branch predictor.

The goal of this paper was to obtain a working
simulation to compare a neural network branch
predictor with current branch prediction
technology. In order to achieve that goal, four
tasks were established:

1) Develop an Artificial Neural Network

2) Modify the Simple-Scalar simulator to

accept an ANN branch predictor

3) Train the Neural Network

4) Evaluate the ANN branch predictor:

BRANCH PREDICTION

According to Schlansker et al., “branch
prediction is the process of correctly predicting
whether branches will be taken or not before
they are actually executed” [1]. Branch
prediction is a fundamental factor for achieving
high performance in today’s microprocessors,
since in regular programs 1 of every 3 to 5
instructions is a branch instruction [16]. Correctly
predicting a branch will avoid wasting clock
cycles waiting for the result of a branch
destination calculation to become available, and
in that way they help to keep the processor
pipelines as busy as possible by fetching
instructions from the predicted branch
destination.

Modern microprocessors use more internal
parallelization and added functionality for
increasing microprocessor throughput, which

puts a high demand on the provision of useful
instructions to execute.

If the microprocessor does not implement a
branch prediction mechanism, pipeline stalls will
happen. When a conditional branch is decoded,
the information that is required to know its
outcome might be not available. The branch
condition can be the result of an instruction
depending on others waiting to be computed.
Until the branch condition is known, the
processor cannot issue more instructions.

To overcome this obstacle, the processor must
predict the outcome of branches, that is, predict
the result of the branch condition before it is
executed. It must also implement a mechanism
to speculatively fetch the instructions along the
predicted path. These instructions are issued
and executed before the branch condition is
determined. Therefore, if the prediction is
correct, the processor can keep working without
stalls. In the case that the prediction is wrong,
the processor needs to discard all the
instructions incorrectly fetched, issued, and
executed. This situation is called a branch
misprediction, and the clock cycles wasted on
restoring the correct processor’s state are called
the branch misprediction penalty.

Two-level Branch Predictors

In this method, two bits are used to keep track of
the prediction history. Only after two consecutive
mispredictions is the prediction state changed
from predict taken to predict not taken. Figure 1
shows how this is achieved in a state diagram.

 Figure 1: Two-Bit Prediction Method States.

While this method provides fairly good prediction
accuracy, it is still not as ideal as current
technology needs, nor as good as current
technology can provide.

Among the current dynamic techniques, two-
level branch predictors have been shown to be
one of the best mechanisms to predict the
outcome of conditional branches. A typical two-
level branch predictor configuration has one
level that generates an index, which is then used
in the second level to access a table containing
information about the history of branches. The
table is called the Pattern History Table (PHT).

Each entry in the table contains information
about the previous behavior of the branches
mapped to it. The indexing function is based on
the address of the current branch to be predicted
and a register called the Branch History Register
(BHR), which keeps track of the outcome of the
most recent branches.

There are several variations of the two-level
branch predictor scheme, depending upon how
the PHT is organized, what information is stored
in it, and what information is used to index its
content. The different combinations can index
the PHT using history kept globally for a set of
addresses or for individual addresses. The PHT
can contain a two-bit saturating counter or a
fixed 1-bit prediction in each cell. This class of
predictors often requires large and costly tables.

The gshare predictor is a scheme that attempts
to reduce the amount of hardware needed by
combining the address information and the BHR
register. It performs an XOR operation
(exclusive or operation) between the BHR
register and the branch address, and the result
is then used to index the PHT. This scheme has
a limitation; it increases interference in the
pattern history table. [3].

The prediction is obtained based on dynamically
stored information related to the branch to be
predicted, its previous outcomes, the previous
outcomes of the most recent branches, or any
other architectural information available at the
time of making the prediction. Table 1
summarizes the different configurations for two-
level adaptive branch predictors according to its
organization.

Table 1: Two-Level Adaptive Predictor’s

Combinations.

History Kept Table Content

Globally (G) 2-bit Saturating
Counters (A)

For a Set of
Addresses (S)

Fixed Prediction
(S)

Individual
Addresses (P) ---

Selected Predictor Configurations

The structures of some particular configurations
to be used as the base of proposed predictor are
illustrated below. The predictors selected for this
study were examined because they are
variations of the Two-Level Adaptive Branch
Predictors which have been researched,
implemented and improved in many previous
studies [3].

The GA Predictor

In the architecture known as Global Address
(GA) predictor (Figure 2), the PHT has its rows
indexed by the BHR and its columns indexed by
the branch address. The BHR is an n-bits wide
register used to address the rows of the PHT,
which contains information about the behaviour
of the (n) most recently executed branches. The
columns are indexed by the (j) lower bits of the
branch address, where the number of columns
of the PHT determines (j).

Figure 2: Schematic of GA predictor.

The Pacific Journal of Science and Technology –82–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

The Gshare Predictor

Figure 3 shows another approach called the
gshare predictor. This scheme reduces the
amount of hardware needed by combining the
address information and the BHR register. The
operation between the BHR and the branch
address is an XOR function; the result of this
operation is then used to address the rows of a
single column PHT. As mentioned before, this
scheme has a limitation; it increases interference
in the pattern history table.

Figure 3: Schematic of a gshare Predictor.

The PA Predictor

Another approach is the one known as Per
Address (PA) predictors. This scheme, shown in
Figure 4, uses information about the previous
behaviour of the branch to be predicted to
address the rows of the PHT. The information is
stored in a table (BHRs) addressed by the
current branch address. The output of this table
is then used to index the PHT.

Figure 4: Schematic of Per–Address

 Predictor.

Hybrid Predictors

Hybrid branch predictors combine several
prediction strategies into a single predictor;
these predictors use a mechanism for selecting
the best predictor for a given branch. What a
hybrid branch predictor scheme does is to
decide which registers are important for every
different type of branch. A comparison of
different combinations of single-scheme
predictors is presented in [3], which shows the
misprediction rates for each scheme with six
different predictor sizes, varying from 8KB to
256KB. The single-scheme predictors used in
that study are gshare, PA, a single column PHT
indexed with the branch address, and a static
branch predictor.

For all the predictors and their possible
combinations, the misprediction rate was
obtained and compared. The misprediction rates
given were the average of the rates achieved for
the six SPECint92 benchmarks [3]. Their results
showed that for every different predictor size the
ordering of the predictor class combinations was
the same. The gshare/PA combination achieved
the lowest misprediction rate which was on
average 13% lower than that of its closest
competitor, gshare/static. The best single-
scheme predictor at all levels of cost was gshare
[3].

The gshare/PA was the only combination of
single-scheme predictors able to obtain a benefit
of both types of correlation between branches.

The two types of correlation are the correlation
between the last branch outcomes and the
branch to be predicted, and the correlation
between previous outcomes of the current
branch and itself.

The gshare component predicts more accurately
branches whose outcomes are dependent on
the outcomes of other static branches, and the
PA component predicts more accurately
branches whose outcomes are dependent on
previous outcomes of the same static branch [3].
Since this predictor achieved the highest
performance, we can infer that both types of
history information are critical for achieving high
levels of accuracy.

The Pacific Journal of Science and Technology –83–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

MICROPROCESSOR ARCHITECTURE

To understand the importance of branch
prediction, an examination of the overall
microprocessor must be done. Most
microprocessors today are of a superscalar
design, meaning that they execute multiple
instructions at once. Most current
microprocessors share much in common with
this superscalar architecture [33] the post-RISC
architecture. Figure 6 [28] shows the generic
layout of a Post-RISC processor pipeline.

MEMORY

PREDECODE

INSTRUCTION CACHE

DECODE / BRANCH

INSTRUCTION DISPATCH
AND REORDER BUFFER

Data
Cache

COMPLETED INSTRUCTION
BUFFER

RETIRE UNIT

L
O
A
D

S
T
O
R
E EXECUTION UNITS

B
R
A
N
C
H

FETCH / FLOW

Figure 6: The Post-Reduced Instruction Set
Computer (RISC) Architecture.

From examining Figure 6, there are six important
steps in the processor pipeline. First, instructions
are read from memory in the Pre-decode stage
and stored into the Instruction Cache (I-Cache).

In the superscalar architecture, multiple
instructions are read into the cache at one time
(for most current processors, four instructions
are read [33].

As a part of pre-decoding, extra bits are
appended to the instructions in order to assist in
decoding in a later stage. During the Fetch/Flow
stage of the pipeline, instructions fetched from
the I-Cache are decided However, it is not until
the third pipeline stage, the Decode/Branch
stage, that a prediction on a branch instruction is
actually made. At this point,” not taken”
branches are discarded from the pipeline, and
decoded instructions are passed on to the
Instruction Dispatch and Reorder Buffer stage.
In the Instruction Dispatch and Reorder Buffer
stage, instructions are queued up and wait to
move on to an available execution unit in stage
five. Examples of execution units are load/store
units, branch units, floating point units and
arithmetic logic units.

Which types and how many of each of these
execution units are needed is decided by the
designers of the microprocessor. At this point in
stage five, after the appropriate calculations are
done for a branch instruction, the Fetch/Flow
stage of the pipeline is informed of branch
mispredictions so that it can start recovering
from mispredictions.

The Branch/Decode stage is also informed of
mispredictions so that it can update its prediction
methodology (typically, updating of tables or
registers). After an instruction is successfully
executed it is sent on to the Completed
Instruction Buffer (stage six) and the Retire Unit
successfully updates the state of registers based
on the completed instruction (usually at a rate
equal to that of pre-decode stage instruction
fetching).

Instructions could be waiting in the Completed
Instruction Buffer until information about a
branch instruction becomes available so that
they can be retired or erased. Figure 6 shows
that branch prediction effects multiple stages of
the pipeline.

Simple-Scalar Software Architecture

Simple-Scalar has a modular layout. This layout
allows for great versatility. Components can be
added or modified easily. Figure 7 shows the
software structure for Simple-Scalar. Most of
the performance core are optional modules [29].

The Pacific Journal of Science and Technology –84–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

Figure7: Simple-Scalar Software Architecture.

Hardware Architecture

The Hardware architecture of the Simple-Scalar
simulator closely follows the Post-RISC
architecture previously described. Figure 8
shows the out-of-order pipeline for the Simple-
Scalar hardware architecture.

Fetch Dispatch Scheduler

Scheduler

Memory

Exec

Mem

Writeback Commit

I-cache

I-cache
(IL 2)

(IL 1)
I-TLB D-cache D-TLB

(DL 1)

D-cache
(DL 2)

Virtual Memory

Figure 8: Out-of-Order Issue Architecture.

Superscalar Microprocessor Architecture Of
PowerPC™ 603e Microprocessor.

This presentation discusses techniques for
optimizing instruction execution in a superscalar
microprocessor architecture such as the
PowerPC™ 603e microprocessor (Figure 9).

Figure 9: Block Diagram of 603e.

Instruction execution in a superscalar processor
is enhanced by allowing the parallel execution of
multiple instructions. In order to enable the
maximum potential of most superscalar
processors, one needs to be aware of their
instruction flow and execution mechanisms.
Optimal performance in a microprocessor can be
attained by ensuring a continuous flow of
instructions through the instruction pipeline.

Being aware of the dependencies and
constraints of the instruction flow mechanisms
allows one to generate code that can most
effectively and optimally take advantage of all
the capabilities of a superscalar processor such
as the PowerPC 603e microprocessor. The 603e
is a low-power implementation of the PowerPC
family of reduced instruction set computer
(RISC) microprocessors.

The 603e is a superscalar processor capable of
issuing and retiring as many as three
instructions per clock. Instructions can “execute”
out-of-order for increased performance, but they
“retire” in-order to ensure functional correctness
and well-ordered behaviour. In this work, it is
important to discuss the instruction flow
mechanism of the PowerPC 603e
microprocessor and then describe dependencies
and constraints that should be avoided to reduce
stalls in the instruction pipeline and maximize
performance.

The Pacific Journal of Science and Technology –85–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

By closely examining the instruction flow
mechanism of the 603e, a software developer
will not only be able to optimize code for the
603e, but will also be able to understand some
of the general principles behind Superscalar
microprocessors that can impact performance.

ANNS USED IN THIS RESEARCH

For the present research the structure of the
neural net is kept as simple as possible. A
simple NN used has an input layer with 40
elements and a single processing element on
the output layer. Slightly more complex
examples add 10 and 20 elements in a hidden
layer. While the data reported for this study used
this simple feedforward structure, the
implementation of other structures which would
simplify the extraction of the PHT indexing
function were also considered.

The other NNs used were Learning Vector
Quantization (LVQ) nets. The LVQ NN has one
competitive layer (Kohonen layer) that performs
the quantization and an output layer that
performs the classification. Each element in the
output layer is assigned an equal number of
elements from the Kohonen layer.

Figure 5 shows a diagram of an LVQ net. During
training, every element in the Kohonen layer is
presented with each entire input vector. The
distance (di) of every PE’s weight vector (wij) to
the input vector (x) is computed and the closest
one is declared the winner. Euclidean distance is
used to determine the distance between the
input vectors and the weight values for a
particular PE.


Then if the PE is in the class of the input vector,
it is moved closer to the input vector. If the
winning PE is not in the class of the input vector,
it is moved away from the input vector. This way,
the PEs group together in regions associated
with each class.

During recall, the distance from the input vector
to each PE is calculated and the closest PE is
declared to be the winner. Then, the input vector
is classified as belonging to the class

corresponding to the winner PE. The two output
classes are the not-taken branch (NT) and taken
(T) branch. The NT class provides a 0, and the T
class provides a 1 to the predictor’s output. The
LVQ NNs used in this research has 128 and 256
elements in the Kohonen layer and two outputs.

INPUT
L AYE R

KOHONE N
L AYE R

OUT PUT
L AYE R

y 2

y1

Xn

X2

X1

Figure 5: Learning Vector Quantization Neural

Net.

Neural Net Predictor

The aim of the neural net (NN) is to find a better
function for combining the information available
to the predictor. The idea is to use a NN to find
the optimal function to merge the information
available in the microprocessor architecture to
create a more accurate predictor. This function
could then be implemented in the system.

The methodology is to let the NN learn about the
dynamics of programs, and particularly,
conditional branch instructions, while they are
being executed in a microprocessor. The
available information consists of snapshots of all
the registers involved in the prediction
mechanism for every branch in the program, and
during training, the correct outcome for the
branch provided by a perfect theoretical
predictor.

The NN's task is to learn the function of the
whole predictor. After training, the NN is to be
studied to extract knowledge for use in designing
hardware architecture of the predictor. Figure 10

The Pacific Journal of Science and Technology –86–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

shows a scheme of a possible prediction
mechanism using a NN to implement the
hardware predictor. This is the approach
explored here. The PHT is included in the neural
net architecture.

NN

Branch address

predictionBHSRs

BHSR

Figure10: Schematic of predictor using a NN

to implement the entire predictor

The net is provided with all the dynamic
information related to the current and previous
branches that other schemes utilize. This way
we let the NN decide which variables are
important and which could be discarded. Hybrid
branch predictors combine several prediction
strategies into a single predictor; these
predictors use a mechanism for selecting the
best predictor for a given branch. All current and
historical behaviour is available to the NN during
training. Hence, the NN should be able to
identify the information important to predicting
each branch. This, in effect, implements an
internal selection mechanism like that of a hybrid
branch predictor.

The dynamic data provided to the NN is created
by tracing a compiled program. Hence, the NN
will learn characteristics of one particular
compiler and platform for which they were
compiled. However, in order to keep the
compiled program as generic as possible, the
compiler used to create the binaries executed by
the simulator is a generic compiler (gcc-2.6.3)
run with standard switches [11].

The Simple-scalar Simulator

A modification of the Simple-scalar Tool Set is
used to perform the simulation of the
microprocessor architecture. "This tool set
consists of compiler, assembler, linker,
simulation, and visualization tools for the Simple-
Scalar architecture" [7]. Simple-scalar is an
execution-driven simulator; the architecture that
it models is a close derivative of the MIPS
architecture. In this research the out-of-order
version of the simulator is used. The out-of-order
issue processor simulated supports non-blocking
caches, speculative execution, and implements
several branch predictors [7].

Simulations Outline

In the first part of the study the simulator was
modified to extract snapshots of the state of the
machine every time a conditional branch has to
be predicted (see Figure 11).

The snapshots consist of information about the
branch to be predicted: its address, the contents
of the global address branch history register
(BHR), the contents of the per-address branch
history register (BHRs), and the actual outcome
of the branch. All the magnitudes are binary {0,
1}. The branch address is 24 bits wide, the
general and per-address history registers are 8
bits wide each, and the output is 1 bit. The
outcome of the branch is actually obtained in the
cycle after the prediction, when the branch is
executed. Instructions are internally executed at
the dispatch stage, and not in the execute stage
as in a real processor, due to the way that the
simulator is implemented.

The data obtained from the simulator was used
to train the neural net. After training the neural
net, it was implemented in the simulator as a
predictor (see Figure 12). The routine called
NNpredict is presented with data coming from
the registers inside the processor simulator and
the NN's output is presented to the processor as
the direction prediction, replacing the complete
direction prediction structure in the processor
simulator. Running the modified simulator, we
then obtained the run-time performance of the
neural net predictor.

The Pacific Journal of Science and Technology –87–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

benchmarks

Inputs to the
predictor

Branch
outcome

Processor

L1
Trace file

Learning 1 file

Testing files

Learning 2 file

Training and
testing files

L2

1

2

3

Figure11: Data Collection Scheme.

NN

benchmarks

Inputs to the
predictor

Processor

Branch
outcome

Branch
predication

Figure 12: Integration of the Neural Net

Predictor.

Prediction rate =

)(
)()(

branchesofnumber
ionmispredictbranchesofnumber

−−
−−−

Data Files Creation

The simulator was compiled and run on a
SPARC Solaris 2. The benchmarks used are
from the SPECint95 benchmarks set [21] using
reference inputs. The eight benchmarks used
are compress, gcc, go, ijpeg, li, m88ksim, perl
and vortex.

The results reported are based on the direction
misprediction rate and compared to the ones
achieved by different predictors for identical
processor configurations. All the benchmarks
are executed by the simulator and data traces
are obtained for each one of them. Every line of
the files created refers to a conditional branch
executed by the processor.

After approximately one million instructions, the
predictor reaches a steady state and its
accuracy stabilizes [20]. Therefore, capturing
over one million instructions ensures that the
resulting trace files contain transient and steady
state information about the predictor behavior.
Output files are created by executing four million
instructions, this way all the benchmarks create
output files with at least 300,000 lines, the
selected amount of data for NN training. The
number of branches to trace was selected
because of the previous mentioned reasons and
for practical file size reasons.

The output files are split into 3 segments, to
create 3 files of 100,000 lines each. The first set
is the training-1 set, it contains the first 100,000
instructions from the trace file, The second is the
testing-set and the third is the training-2 set,
containing the second and third 100,000
instructions respectively. Since there are eight
benchmarks, each file contains 800,000 training
samples.

The data format for the training and
generalization set files is that of NeuralWorks
input (.nna) files. The first section of the record
contains all the bits which are the content of the
address and branch history registers, plus a
prediction bit which is the prediction of the

The Pacific Journal of Science and Technology –88–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

standard two-level predictor included in the
simulator. The second part of the record
contains the desired network output value, in this
case the real outcome of the branch, which can
be not taken (‘ 0’) or taken (‘ 1’). The records are
all ASCII.

The frequency distributions of the 2 branch
outcome classes for these files are:

Training-1 set:

File Not-Taken branch Taken branch
L_compress 29283 29.3% 70717 70.7%
L_gcc 44435 44.4% 55565 55.6%
L_go 44925 44.9% 55075 55.1%
L_ijpeg 58273 58.3% 41727 41.8%
L_li 47875 47.9% 52125 52.1%
L_m88ksim 27347 27.4% 72653 72.7%
L_perl 53006 53.0% 46994 47.0%
L_vortex 29430 29.4% 70570 70.6%
L1 334574 41.8% 465426 58.2%

Training-2 set:

File Not-Taken branch Taken branch
L2_compress 6213 56.2% 43787 43.8%
L2_gcc 41383 41.4% 58617 58.6%
L2_go 21883 21.9% 78117 78.1%
L2_ijpeg 59954 60.0% 40046 40.0%
L2_li 55455 55.5% 44545 44.5%
L2_m88ksim 49219 49.2% 50781 50.8%
L2_perl 50729 50.7% 49271 49.3%
L2_vortex 36361 36.4% 63639 63.6%
L2 371197 46.4% 428803 53.6%

Testing set:

File Not-Taken branch Taken branch
T_compress 55998 56.0% 44002 44.0%
T_gcc 53470 53.5% 46530 46.5%
T_go 21921 21.9% 78079 78.1%
T_ijpeg 59940 59.9% 40060 40.1%
T_li 52485 52.5% 47515 47.5%
T_m88ksim 48029 48.0% 51971 52.0%
T_perl 56137 56.1% 43863 43.9%
T_vortex 31874 31.9% 68126 68.1%

Training Procedure

For both types of nets, it is necessary to adjust
the I/O parameters to fit the input (.nna) files.
Under the I/O menu in parameters, we find the
following parameters: The input field start is 1,

and the output field start is 42 for the back-
propagation nets and 43 for the LVQs. The
network ranges are 0.00 to 1.00 for both input
and output since all the magnitudes are binary
bits. Learning and recall are read from a file in
sequential order, since the randomized reading
option cannot be used with the size of the files
used in this research.

The back propagation nets are trained on
L1.nna and L2.nna for 1, 2, 3 and 4 passes over
the training file. That is, 800,000, 1,600,000,
2,400,000 and 3,200,000 iterations. The LVQ
nets are trained on the same files, but the
number of iterations is: (1) 800,000 for LVQ1
plus 100,000 for LVQ2. (2) 1,600,000 for LVQ1
plus 100,000 for LVQ2. (3) 3,200,000 for LVQ1
plus 100,000 for LVQ2 and (4) 4,000,000 for
LVQ1 plus 1,000,000 for LVQ2.

The training procedure takes between two and
fourteen hours (computer running time),
depending on the size of the NN, the amount of
pairs presented to it, and its architecture.

RESULTS

Neural Networks Training Comparison

The neural network simulator used in this project
is NeuralWorks Professional II/Plus®, of
NeuralWare, Inc. It provides a classification rate
table containing the classification rate for each
class and an average of the classification rates
over the different classes. The classification rate
can be defined for a given class, as the number
of correct answers divided by the total number of
pairs provided, in that class.

We can see from Figure 13 that for some of the
NNs, the average classification result on the test
files is higher than the classification result on the
training file. This is because the training file is
composed of fractions of the eight different trace
files and the transitions between benchmarks
during learning cause high errors. We can also
see that the NNs that achieved high
classification results during training did not
generalize well, that is they did not perform as
well on the test files. The networks tested are:

Backpropagation: Input layer: 40 elements;
hidden: 0, 10 and 20; output: 1

The Pacific Journal of Science and Technology –89–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

LVQ: Input layer: 40 elements, Kohonen: 128
and 256; output: 2

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

c
la

s
s

if
ic

a
ti

o
n

 r
a

te

N e u r a l n e t

Training file A v ar age on the tes t fi les

69.30%68.75%70.91%

92.66%

69.35%

56.25%

71.78%
62.50%

70.55%
76.19%

67.49%
60.00%

66.46%

40-1 40-10-1 40-20-1 40-20-1 40-20-1 LCQ128 LCQ256

83.34%

69.67%

LCQ256

Figure 13: Classification results for the best

NNs.

Table 2 summarizes the best nets based on the
average testing classification rate. Figure 13
shows the learning and average testing
classification rates for those best nets.

Table 2: Classification Results from
NeuralWorks for the best NNs.

Simulator Prediction Accuracy Results

Tables 3, 4, and 5 show the prediction rates
achieved by the standard and the NN predictors

for each one of the eight benchmarks and the
arithmetic mean for each predictor.

Table 3 compares the prediction rates achieved
by different configurations of standard predictors
and the two best NN predictors. These values
are the prediction rates achieved only for those
branches that actually use the direction predictor
that is conditional branches. The prediction rates
are obtained from the trace files obtained when
running the benchmark programs, they are not
the prediction rates reported by the simulator
(which include all branches executed by the
processor). Before showing a performance
comparison, the results for different standard
predictors and NN predictors are presented.

Table 3: Prediction Rates for the Standard

Predictors Tested.

Standard Predictors Tested

Table 3 shows the prediction rates achieved by
the different standard predictor configurations.
Figure 14 shows the average prediction rates for
the different configurations.

The GA1K and GA16K predictors are global
address two-level branch predictors whose level-
1 table has 1 entry and PHT has 1024 and
16384 entries respectively.

The PA4K and PA64K are two-level branch
predictor whose level-1 table has 4 and 8 entries
and its PHTs have 4096 and 65536 entries
respectively.

The Pacific Journal of Science and Technology –90–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

The gshare1K and gshare16K predictors are
gshare predictors whose PHT has 1024 and
16384 entries respectively, its level-1table has 1
entry and the XOR flag is turned on.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

91.67%

Average rates for the standard predictors

GA1K

73.02%
77.39%

53.28%

93.84%

GA16K PA4K PA64K gshare1K gshare16K

NN predictors

Average
Prediction

rate

Figure 14: Average Prediction Rate for the
Different Standard Predictor Configurations.

Neural Net Predictors Tested

The first part of the name is the training file used
(L1, L2), the second part is the type of net (bkp
or LVQ), and the third part is the number of
elements in the different layers of the net.

L1 bkp40-1: back propagation network trained
for 2,400,000 iterations on L1.nna

L2 bkp40-1: back propagation network trained
for 800,000 iterations on L2.nna

L1 bkp40-10-1: back propagation network
trained for 3,200,000 iterations on L1.nna

L2 bkp40-10-1: back propagation network
trained for 3,200,000 iterations on L2.nna

L1 bkp40-20-1: back propagation network
trained for 3,200,000 iterations on L1.nna

L2 bkp40-20-1: back propagation network
trained for 3,200,000 iterations on L2.nna

L1 LVQ40-128-2: LVQ network trained for
5,000,000 iterations on L1.nna

L1 LVQ40-256-2: LVQ network trained for
5,000,000 iterations on L1.nna

L2 LVQ40-256-2: LVQ network trained for
5,000,000 iterations on L2.nna

Tables 4 and 5 show the prediction rates
achieved by the different NN predictors. Figure
15 shows the average prediction rates over the
benchmarks set for the different predictors.

Table 4: Back-propagation NNs Prediction
Rates.

 Table 5: LVQ NNs Prediction Rates.

The Pacific Journal of Science and Technology –91–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

NN Predictors

Nns Comparison

Figure 15: Average prediction rate for the NN
predictors comparison

Performance Comparison

Figure 16 shows a comparison of average
prediction rate for the NN predictors. The NN
predictors are only compared to the small size
standard predictors, not only because they were
trained on traces of data created by predictors of
similar size, but also because the estimated
implementation size would be comparable.

There are several different ways to implement a
neural network in a chip. "Implementations
include digital, analog, and hybrids while the
network architectures include layered networks
with feed forward processing, fully
interconnected recurrent networks, single layer
winner-take-all networks, radial basis functions,
etc. Some have on-chip learning while others
may have no learning capability and only
execute fast recall processing" [17]. For the type
of neural networks used in this research, a
hybrid/analog implementation is the most
appropriate. Using this type of implementation, a
processing element usually implies a small
number of transistors comparable to the number
than a static memory cell would require [26].

The weights of the neural network do not require
additional hardware, because they are
embedded in the transistor geometry. Therefore,

the size of the neural network implemented in
the chip would be smaller than the standard
predictors used in the comparisons. Table 6
contains the prediction rate for the best NN
predictors (bkp40-10-1 and bkp40-20-1) and the
standard predictors; the benchmarks are sorted
in the table according to their percentage of
dynamic branches. Figure 17 shows the
prediction rate of the best NN predictor versus
the percentage of branches in the benchmark.

Figure 16: Average Prediction Rate of the NN

Predictors.

Table 6: Best NNs and Standard Predictors
Comparison.

Retraining the Best NNs with Bigger
Predictor Sizes

In order to make a fair comparison of the NN
predictors against the standard predictors with
bigger tables, it was necessary to retrain the

The Pacific Journal of Science and Technology –92–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

NNs. The best two NN configurations were
retrained on a new set of data created with a
new predictor configuration. The new
configuration has 128 entries in the BHSR table
and a PHT with 65536 entries. The eight
benchmarks in the set were run with this
configuration and traces of them were collected
and processed. The training file was created
with the L2 set that is, with the third 100,000
lines of the trace files for each benchmark. The
test files were created with the second 100,000
lines of the traces.

Figure 17: NN Predictor Performance vs.
Percentage of Branches.

A new NN was also trained on the new training
file. Since the resources used for the standard
predictor changed from a few kilobytes to 64
kilobytes, this new NN was given 200 elements
on the hidden layer instead of 10 or 20 as in the
previous case.

T642_compress.nna second 100,000 pairs of
compress’ output

T642_gcc.nna second 100,000 pairs of

gcc’s output

T642_go.nna second 100,000 pairs of

go’s output

T642_ijpeg.nna second 100,000 pairs of

ijpeg’s output

T642_li.nna second 100,000 pairs of

li’s output

T642_mksim.nna second100,000 pairs of
m88ksim’s output

T642_perl.nna second 100,000 pairs of

perl’s output

T642_vortex.nna second 100,000 pairs of

vortex’s output

L12864.nna 800,000 pairs from the

L2_ files

The NNs selected for retraining were
backpropagation nets with 10 and 20 elements
in the hidden layer (bkp40-10-1 and bkp40-20-
1), and the new NN has 200 elements in the
hidden layer. The NNs were trained for
3,200,000 iterations on the L12864.nna file.
Table 7 shows the prediction rates achieved by
the NN predictors. Figure 18 shows the average
prediction rate over the benchmarks set.

Table 7: Prediction Rates from NeuralWorks for

the Best NNs bkp.

Figure 18: Average prediction rates over the
benchmarks set

The Pacific Journal of Science and Technology –93–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

Then the code for these NNs was extracted and
integrated into the simulator to obtain the
prediction rates. The simulator was run for
1,000,000 instructions on each benchmark.
Table 8 shows the prediction rates achieved by
the different NN predictors. Figure 19 shows the
average prediction rates NN predictors.

Table 8: Back-propagation NNs bkp Prediction

Rates.

Figure 19: Average Prediction Rate of the NN
and Standard Predictors Over the Benchmarks

Set.

The approach taken to use the added resources
was increasing the number of neurons in the
hidden layer. Another approach could be adding
neurons in the input and/or output layer acting
as delay elements, providing this way the NN
with local memory.

Results Analysis

As can be seen in the comparisons (Table 6),
the best of the neural net predictors (bkp40-10-
1) performs better than the other techniques, for
small predictor sizes, even without an adaptive
mechanism. For bigger predictor sizes, the

standard techniques outperform the non-
adaptive NN predictors. It can be seen in Table
6 and Figure 17 that the performance of the NN
predictors decreases when the number of
dynamic branches in the benchmark increases.
This shows that the high percentage of branches
in the benchmarks negatively affects the
behaviour of the non-adaptive NN predictor.

The non-adaptive characteristic of the NN
predictor affects its performance in benchmarks
like compress, which has the highest number of
dynamic branches as compared to the other
benchmarks. The benchmark gcc when run for
1,000,000 instructions executes 228,814
conditional branches; that is, a 23% of the
instructions executed are conditional branches
that have to be predicted (Table 6).

Studying the output file created by the
benchmark gcc, we can see that among those
228,814 conditional branches, 44,637 unique
combinations of branch address and history
registers are involved, that is 19.50%. In
contrast, the benchmark ijpeg for 1,000,000
instructions executed executes only 142,794
(14.28%) conditional branches, with only 1,040
unique combinations (0.72%). For this
benchmark, the best of the neural net predictors
achieved a prediction accuracy of 98.54%, which
is 20% higher than the highest achieved by
current techniques.

This reinforces the idea that the next step to
improve the performance of the NN predictors
for all cases is not increasing the size, but
adding an adaptive mechanism to them. The
adaptive mechanism could be either an online
refinement of the predictor's design or more
support hardware to assist the NN predictor.
Once the adaptive predictor is designed and
tested, its implementation in hardware can be
studied.

CONCLUSION

Modern microprocessors use high internal
parallelization and added functionality for
increasing microprocessor throughput, which
puts a high demand on the provision of useful
instructions to execute. Correctly predicting a
branch in the instruction flow will avoid wasting
clock cycles waiting for the result of a branch
destination calculation to become available. This

The Pacific Journal of Science and Technology –94–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

keeps the processor pipelines as busy as
possible by fetching instructions from the
predicted branch destination.

The processor must correctly predict the
outcome of branches, because in the case that
the prediction is wrong, the processor needs to
discard all the instructions incorrectly fetched,
issued, and executed. Even if current dynamic
techniques achieve prediction accuracies in the
order of 85%-90%, a misprediction rate of 10%
is too high for the wide and deep pipelines
present in almost all the microprocessors.
Moreover, if we can increase the accuracy e.g.
from 90% to 92% we are decreasing the
misprediction from 10% to 8% that is a 20%
improvement in the misprediction rate.

Several static and dynamic approaches have
been designed and tested [3]. The approach
taken in this research points to a combination of
both techniques. The methodology is to let an
Artificial Neural Network learn about the
dynamics of programs, and particularly,
conditional branch instructions, when they are
being executed in a microprocessor. After
studying the standard hardware-predictor
configurations, two-level branch predictors were
selected.

There are more complex and accurate branch
predictors, but they are usually a modification of
the basic structures [3]. The information
available to the predictor consists of snapshots
of all the registers involved in the prediction
mechanism for every branch in the program, and
during training, the correct outcome for the
branch is provided by a perfect theoretical
predictor.

All current and historical behavior are available
to the NN during training, as it is provided with
all the dynamic information related to the current
and previous branches that other dynamic
schemes utilize. The NN's task is to learn the
function of the whole predictor. After training, the
NN is to be implemented in the simulator to
replace the standard predictor implemented in it.
This is a pseudo-dynamic implementation
because even if the predictor is simulated online,
it is trained offline with traces of programs and it
doesn't dynamically gather information from the
current program being executed.

Implementation of the Neural Network
Predictor and Testing

After training the neural nets, they were
implemented in the simulator as the predictor.
The routine called NNpredict contains NN code.
It is presented with data coming from the
registers inside the processor simulator and its
output is supplied to the processor as the
direction prediction, replacing the complete
direction prediction structure in the processor
simulator. Running the modified simulator, the
run-time performance of the NN predictors were
obtained. These values are the prediction rates
achieved only for those branches that actually
use the direction predictor, that is, conditional
branches.

Several of the trained NNs were implemented in
the simulator and tested as well as standard
predictor configurations. The size of the neural
network implemented in the chip would be
smaller than the standard predictors used in the
comparisons.

In order to make a fair comparison of the NN
predictors against the standard predictors with
bigger tables, it was necessary to retrain the
NNs. The best two NN configurations were
retrained on a new set of data created with a
new predictor configuration. The prediction rates
achieved by the NN predictors are lower than
the ones achieved by the standard predictors,
even the new NN with more elements couldn't
achieve the high rates that the standard
predictors achieved.

Even without an adaptive mechanism, the best
of the neural net predictors performs better than
the small standard predictors. For bigger
predictor sizes, the standard techniques
outperform the non-adaptive NN predictors. It
can also be seen on the comparison that the
performance of the NN predictors decreases
when the number of dynamic branches in the
benchmark increases. The focus of this research
was evaluating the improvement that can be
achieved by using a neural network to predict
the outcome of branches.

Adaptive mechanism

The non-adaptive characteristic of the NN
predictor used in this research affects its
performance in benchmarks like gcc, which has

The Pacific Journal of Science and Technology –95–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

the highest number of dynamic branches as
compared to the other benchmarks, reducing
dramatically the overall performance. As can be
seen in Table 8 (back-propagation NNs
prediction rates), the standard techniques
outperform the non-adaptive NN predictors for
bigger predictor sizes, showing that an adaptive
mechanism is needed instead of an increase on
the predictor's size. The adaptive mechanism
could be either an online refinement of the
predictor's design or more hardware support to
assist the NN predictor.

Together with developing an adaptive
mechanism, the implementation of the NN
predictor in hardware has to be studied. The
type of implementation chosen for the predictor
will highly affect the design of the adaptive
mechanism. This is one of the reasons why the
present research does not go further in respect
of the design of the on-line adaptive mechanism.

A design consideration for the adaptive NN
predictor would be the initial state of its weight
values. The weights can start with the values
assigned to the offline trained NN or they can be
randomly initialized. Experiments carried out in
this research do not clearly show if the weights
of the offline-trained NN are good initial values
for a new training or not.

REFERENCES

1. Schlansker, M.S., B. Ramakrishna Rau, S.

Mahlke, V. Kathail, R. Johnson, S. Anik, and S.
Santosh. 1994. "Achieving High Levels of
Instruction-Level Parallelism with Reduced
Hardware Complexity". Technical Report HPL-
96-120. Abraham Computer Research Center.

2. Calder, B., D. Grunwald, D. Lindsay, J. Martin, M.

Mozer, and B. Zorn. 1995. "Corpus-based Static
Branch Prediction". Proceedings of the SIGPLAN
Conference on Programming Language Design
and Implementation. 79-92, June 1995.

3. Po-Yung Chang, E. Hao, and Y.N.Patt. 1995.

"Alternative Implementations of Hybrid Branch
Predictors". In: Proceedings of the 28th
ACM/IEEE International Symposium on
Microarchitecture. November 1995.

4. Young, C. and M.D. Smith. 1994. “Improving the

Accuracy of Static Branch Prediction Using
Branch Correlation”. Proc. 6th Intl. Conf. on
Architectural Support for Programming

Languages and Operating Systems. 232-241.
October 1994.

5. Sechrest, C., C. Lee, and T. Mudge. 1996.

“Correlation and Aliasing in Dynamic Branch
Predictors”. In: ISCA '96. Proceedings of the 23rd
Annual International Symposium on Computer
Architecture. 22-32. May 1996.

6. Chang, P.Y., E. Hao, and Y.N. Patt. 1997.

“Target Prediction for Indirect Jumps”. In:
Proceedings of the 24th Annual International
Symposium on Computer Architecture (ISCA 24).

7. NeuralWorks. 1996. Neural Computing:

ATechnology Handbook for Professional II/PLUS
and NeuralWorks Explorer. NeuralWare, Inc.:
Pittsburgh.

8. Hagan, M.T., H.B.Demuth, M. Beale. 1996.

Neural Network Design. PWS Publishing: Boston.

9. Burger, D.C. and T.M. Austin. 1997.

TheSimpleScalar Tool Set, Version 2.0.
University of Wisconsin-Madison. Computer
Sciences Technical Report #1342.

10. Barto, A.G. 1990. Connectionist Learning for

Control. W.T. Miller, III, R.S. Sutton, and P.J.
Werbos, eds. Massachusetts Institute of
Technology: Boston.

11. Lendaris, G. and C. Paintz. 1997. "Training

Strategies for Critic and Action Neural Networks
in Dual Heuristic Programming Method".
Proceedings of International Conference on
Neural Networks’97 (ICNN’97). IEEE Press:
Houston. 712-717.

12. Lendaris, G., C. Paintz, and T. Shannon. 1997.

"More on Training Strategies for Critic and Action
neural Networks in Dual Heuristic Programming
Method". Proceedings of Systems Man &
Cybernetics Society International Conference’97.
IEEE Press: Orlando.

13. Lendaris, G. and T. Shannon. 1998. "Application

Considerations for the DHP Methodology".
Proceedings of the International Joint Conference
on Neural Networks’98(IJCNN’98). IEEE Press:
Anchorage.

14. Hwu, W.W., T.M. Conte, and P.P. Chang. 1989.

"Comparing Software and Hardware Schemes for
Reducing the Cost of Branches". In: Proceedings
of the 16th Annual International Symposium on
Computer Architecture. 224- 233.

15. Ienne, P. and G. Kuhn. 1995. "Digital Systems for

Neural Networks". In: Digital Signal Processing
Technology, Volume 57 of Critical Review Series.

The Pacific Journal of Science and Technology –96–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

P. Papamichalis and R. Kerwin, eds. SPIE
Optical Engineering: Orlando. 314-45.

16. Ienne, P. 1995. "Digital Hardware Architectures

for Neural Networks". SPEEDUP Journal. 9(1):
18-25.

17. Lindsey, C.S. and T. Lindblad. 1995. “Survey of

Neural Network Hardware (Invited paper)”.
Proceedings, Application and Science of Artificial
Neural Networks, Volume 2492 part 2. S.K.
Roger and D.W. Ruck. SPIE: Orlando. 1194-
1294.

18. Zhou, M. and Z. Su. 1995. "A Comparative

Analysis of Branch Prediction Schemes."
Computer Science Division, University of
California at Berkeley, Final Project. December
1995.

19. Reilly, J. 1995. "SPEC Describes SPEC95

Products And Benchmarks". Intel Corporation:
Santa Clara.

20. Gloy, N., C. Young, J.B. Chen, and M.D. Smith,

1996. "An Analysis of Dynamic Branch Prediction
Schemes on System Workloads". In: Proc. of the
23rd Annual International Symposium on
Computer Architecture. May 1996.

21. Yeh, T.Y., D.T. Marr, Y.N. Patt. 1993.

"Increasing the Instruction Fetch Rate via Multiple
Branch Prediction and a Branch Address Cache".
The 7th ACM International Conference on
Supercomputing. July 19 - 23,1993. Tokyo,
Japan. 67 – 76.

22. Evers, M., S. Patel, R.S. Chappell, and Y. Patt.

1998. "An Analysis of Correlation 99 and
Predictability: What Makes Two-Level Branch
Predictors Work". International Symposium on
Computer Architecture (ISCA-25). June 1998.
Barcelona, Spain. 52-61.

23. Driesen, K. and U. Holzle. 1998. “Accurate

Indirect Branch Prediction”. The 25th
International Symposium on Computer
Architecture. IEEE.

24. “The SimpleScalar Architectural Research Tool

Set,Version 2.0”. (software)
http://www.cs.wisc.edu/~mscalar/simplescalar.html

25. Yeh, T.Y. and Y. Patt. 1993. “A Comparison of

Dynamic Branch Predictors that use Two Levels
of Branch History”. The 20th Annual International
Symposium on Computer Architecture. IEEE
Computer Society Press: Los Alimitos.

26. Muchnick, S.S. 1997. “Advanced Compiler

Design & Implementation”. 1997.

27. Austin, T.M. and D. Burger. 1989. The
SimpleScalar Tool Set.

28. Gallant, S.I. 1988. “Connectionist Expert

Systems”. Communication of the ACM.
31(2):152-169.

ABOUT THE AUTHORS

P.B. Osofisan, Ph.D. obtained his B.Sc.(Eng)
and M.Sc.(Eng) in Electrical Engineering from
the University of Stuttgart, Stuttgart, Germany.
He earned his Ph.D. in Control Systems
Engineering from the same University. He then
worked in a cable manufacturing plant as the
Production/Quality Control Manager for over
15years, before he joined the University of
Lagos as Senior Lecturer in the Electrical and
Electronics Engineering Department. His
research interests include the application of
Fuzzy Logic Theory and Neural Network in the
process control of industrial processes.

O.A. Afunlehin, B.Sc. obtained his B.Sc.
(Techn.) degree from Ladoke Akintola University
of Technology, Ogbomosho, Oyo State in
Nigeria and has just concluded his M.Sc. (Eng)
program from the University of Lagos, Lagos,
Nigeria.

SUGGESTED CITATION

Osofisan, P.B. and O.A. Afunlehin. 2007.
“Application of Neural Network to Improve
Dynamic Branch Prediction of Superscalar
Microprocessors”. Pacific Journal of Science and
Technology. 8(1):80-97.

Pacific Journal of Science and Technology

The Pacific Journal of Science and Technology –97–
http://www.akamaiuniversity.us/PJST.htm Volume 8. Number 1. May 2007 (Spring)

http://www.cs.wisc.edu/%7Emscalar/simplescalar.html
http://www.akamaiuniversity.us/PJST.htm

	Application of Neural Network to Improve Dynamic Branch Prediction
	of Superscalar Microprocessors
	Superscalar Microprocessor Architecture Of PowerPC™ 603e Microprocessor.
	ABOUT THE AUTHORS

