
1

 Rohrer's index Prediction using neural network
 * Olaiju O.A

 olaiju@yahoo.com

 - Are S.O

 oloruntoba22@yahoo.com

 + Ojuawo Olutayo Oyewole,

 teemana2000@yahoo.com
 + Department of Computer Science, Federal Polytechnic Ilaro

 -* Department of Mathematics and Statistics, Federal Polytechnic Ilaro

 ABSTRACT

Artificial neural networks can be considered effective in making Predictions in which

traditional methods and statistics are not suitable. In this article, by using two-layer

feedforward network with tan-sigmoid transmission function in input and output layers, we

can anticipate the prediction of Rohrer Index an anthropometric statistic which combines the

height and weight of an individual into a singular metric used to classify individuals into the

following categories: severely underweight, underweight, normal, overweight, and obese. We

compare different artificial neural networks architectures with the traditional multiple

Regression model. , Ideally the mean error would be zero and the standard deviation would

be as small as possible in other to pick the best model. All of the models' means are relatively

close to zero. However, the breakout occurs with standard deviation. The larger the standard

deviation the greater the range of error, so ANN10 model perfumed best in predicting the

Rohrer Index.

Key words: Rohrer’s Index, Artificial Neural Network, Regression model

http://en.wikipedia.org/wiki/Anthropometry

2

INTRODUCTION

Rohrer’s Index is an anthropometric statistic which combines the height and weight of an

individual into a singular metric. The Rohrer’s Index and the Body Mass Index (BMI) serve a

similar purpose in that both measures can be used to classify individuals into the following

categories: severely underweight, underweight, normal, overweight, and obese. The BMI

measurement assumes the body is a two-dimensional square sheet and it measures weight per

square unit of area, whereas the Rohrer’s Index assumes the body is a three-dimensional cube

and measures weight per cubic unit of volume. The Rohrer’s Index therefore takes into

consideration one’s width and girth unlike the BMI measurement, and assumes that width and

girth are proportional to one’s height. The index is identical with the Ponderal Index.

Calculating Rohrer's Index

The formula for calculating the Rohrer’s Index is:

In metric units: Body weight(g)×100

(Height(cm))3

In Imperial units: Body weight(lb)×2768

(Height(in))3

Uses of Rohrer's Index

Once calculated the Rohrer’s Index measurement can be used for many purposes. One

recently investigated usage of the Rohrer’s Index is medical underwriting. Medical

underwriters typically use height and weight or BMI as a component in the determination of

an individual’s health status because one’s build can be correlated to specific chronic health

conditions such as diabetes and heart disease. Rohrer’s Index is thought of by some to be

preferable to BMI because the threshold values used in the risk stratification of individuals

http://en.wikipedia.org/wiki/Anthropometry
http://en.wikipedia.org/wiki/Body_Mass_Index
http://en.wikipedia.org/wiki/Ponderal_index
http://en.wikipedia.org/wiki/Medical_underwriting

3

during the underwriting process are more consistent than those of BMI, allowing for the

creation of improved and refined predictive health cost models.

In this paper we compare the ability of neural network to predict accurately the Rohrer’s

index against that of the traditional Multi linear regression.

Artificial Neural Networks (ANN)

ANNs are based on the present understanding of the biological nervous systems. An ANN is

a massively parallel-distributed information processing system that has certain performance

characteristics resembling biological neural networks of the human brain (Haykin 1994). The

network consists of layers of parallel processing elements, called neurons. In most networks,

the input layer receives the input variables for the problem at hand. This consists of all

quantities that can influence the output. The output layer consists of values predicted by the

network and thus represents model output. Between the input layer and output layer there

may be one or more hidden layer. The neurons in each layer are connected to the neurons in a

proceeding layer by a weight, w, which can be adjusted during training. The networks are

organized by training methods, which greatly simplify the development of specific

applications. Classical logic in ordinary artificial intelligence (AI) systems is replaced by

vague conclusions and associative recall. This is a big advantage in all situations where no

clear set of logical rules can be given. Figure 1 illustrates a three-layer neural network

consisting of four neurons in input layer, four neurons in hidden layer and two neurons in

output layer, with the interconnection weights between layers of neurons.

4

ANNs Training:

Training network is a procedure during which ANN processes a training set (inputoutput data

pairs) repeatedly, changing the values of its weights, according to a predetermined algorithm,

to improve its performance.

Figure 1 Configuration of Three-layer Neural Network

Back-propagation is perhaps the most popular algorithm for training ANNs. The back-

propagation algorithm gives a prescription for changing the weights, wji, in any feedforward

network to learn a training vector of input-output pairs. It is a supervised learning method in

which an output error is fed back through the network, altering connection weights so as to

minimize the error between the network output and the target output. The following equation

is used for the connection weights adjustment.

∆Wij(n) = − ε ∗ (
∂E

∂Wij
) + α ∗ ∆Wij(n − 1) (1)

5

Where

wij(n) and wij(n-1) = weight increments between node i and j during the nth and (n-1)th

pass, or epoch.

= learning rate.

= momentum.

The momentum factor can speed up training in very flat regions of the error surface and help

prevent oscillations in the weights. A learning rate is used to increase the chance of avoiding

the training process being trapped in local minima instead of global minima. Back-

propagation is a first-order method based on the steepest gradient decent, with the direction

vector being set equal to the negative of the gradient vector. Consequently, the convergence

may progress slowly and may show oscillatory behavior. It is also possible for the training

process to be trapped in the local minimum despite the use of learning rate. The network

architecture is required to be prefixed by trials to do so

Advantages of ANN Models

ANNs offer valuable characteristics unavailable together elsewhere (Zealand et al. 1999):

ANN models infer solutions from data without prior knowledge of the regularities in the data;

they extract the regularities empirically. ANN networks learn the similarities among patterns

directly from instances or examples of them. ANNs can modify their behavior in response to

the environment (i.e. shown a set of inputs with corresponding desired outputs, they self

adjust to produce consistent responses). ANNs can generalize from previous examples to new

ones. Generalization is useful because real-world data are noisy, distorted, and often

incomplete. ANNs are also very good at the abstraction of essential characteristics from

inputs containing irrelevant data. ANN models are non-linear; that is, they can solve complex

6

problems more accurately than linear techniques do. ANN models can provide predications

of output parameters in real time in response to simultaneous and independent fluctuations of

the values of model input parameters. Finally, ANNs are highly parallel. They contain many

identical, independent operations that can be executed simultaneously, often making them

faster than alternative methods.

Development of ANN Models

Selection of Model Inputs and Outputs The selection of appropriate input variables for

proper mapping desired output variables is a very important step to ensure successful

application of ANN models in hydrologic processes. Normally, it starts with a set of inputs

that are KNOWN to affect the process, then add other inputs that are suspected of having a

relationship in the process one at a time. A good understanding of the hydrologic system can

lead to better choice of input variables for proper mapping. This will help in avoiding loss of

information that may result if key variables are omitted, and also prevent inclusion of

spurious inputs that tend to confuse the training process. A sensitivity analysis can be used to

determine the relative importance of a variable (Maier and Dandy 1996) when sufficient data

is available. The input variables that do not have a significant effect on the performance of an

ANN can be trimmed from the input vector, resulting a more compact network. (Liong, Lim

and Paudyal 2000).

 Hidden Layer Size The number of neurons in the input and output layers is determined by

the number of input and output variables for a given system. The size of a hidden layer is one

of the most important considerations when solving actual problems using multilayer

feedforward networks. If there are fewer hidden layer neurons, there may not be enough

7

opportunity for the neural network to capture the intricate relationships between indicator

parameters and the nature of contaminating source. Too many hidden layer neurons not only

require a large computational time for accurate training, but may also result in ‘overtraining’

(Brion et. al, 1999). A neural network is said to be ‘overtrained’ when the network focuses on

the characteristics of individual data points rather than just capturing the general patterns

present in the entire training set.

The following function can be recommended calculating the number of neurons in

hidden layer: (http://www.neuralware.com/frequent.htm)

N = (Number of input + output) ∗ (
2

3
) (2)

Where

N = the number of neurons in hidden layer.

 Data Initialization

The contribution of an input/output will depend heavily on its variability relative to other

inputs/outputs. If one input/output has a range of 0 to 1, while another input/output has a

range of 0 to 1,000,000, then the contribution of the first input/output to the distance will be

swamped by the second input/output. So it is essential to rescale the inputs/outputs so that

their variability reflects their importance, or at least is not in inverse relation to their

importance. One of the most useful ways to standardize inputs is mean 0 and standard

deviation 1 method, which is shown as following: N

meani =
∑ Xi

N
 (3)

http://www.neuralware.com/frequent.htm

8

std = √
∑(Xi

2 − meani)

N − 1
 (4)

Si =
Xi − meani

Std
 (5)

Xi = value of the raw input/output variable X for the ith training case.

Si = standardized value corresponding to Xi.

N = number of training cases

Once the output values are obtained from an ANN model, the actual values are obtained

by the inverse transformation of the equation:

T = O × Std + mean (6)

T = Actual Output Value

O = output from ANN model.

Some Other Inspects

Initialization of weights and threshold values is an important consideration. The closer the

initial guess is to the optimum weight space, the faster the training process. However, there is

no way of making a good initial guess of weights, and they are initialized in a random

fashion. Learning rate affect the speed of convergence. If it is large, the weights will be

changed more drastically, but this may cause the optimum to be overshot. If it is small, the

weights will be changed in smaller increments, thus causing the system to converge more

slowly with little oscillation. Normally it is in the range of 0.2 to 0.5.

9

 Software Support

The software used for this study are Matlab (version 7.6.0(R2008a)). Matlab is developed by

The Math Works, Inc.. and SPSS v16

.

Several authors have done comparison studies between ANNs against traditional linear and

non-linear regression methods in many field of studies (Anmala et al. 2000, Tokar and

Johnson 1999, Zhang et al. 2000, Elshorbagy et al 2000). The results showed that the

artificial neural network model generally performs better than other regression models in

terms of accuracy and consistency.

Development of Neural Network Models

Neural network models are developed through the following steps:

1. Complete historical data analysis and literature reviews to establish the air quality and

precipitation chemistry phenomena that influence acid rain conditions.

2. Select parameters that accurately represent these phenomena and are readily available on a

forecast basis.

3. Identify the most significant variables based on mass balance and statistical analysis

techniques.

4. Create three data sets: 1) a training data set to train the network, 2) a verification data set to

determine when the network’s general performance is maximized through early stopping, and 3)

a testing data set to evaluate the generalization ability of the trained network. The developmental

data sets should contain enough data.

5. Train the data using neural network models and discover the most appropriate network

architecture for the problem.

10

6. Test the generally trained network on a test data set to evaluate the performance. If the results

are satisfactory, the network is ready to be used for forecasting

The neural network models were developed using MatLab. 100 data sets were available for the

network Data were separated into three groups: training, verification and testing

(www.statsoft.com/textbook/stneunet.html).

The 100 data sets were randomly divided into three groups: 70 as training sets, 15 as verification

sets and 15 as testing set. The training set was used to develop the neural network. The

verification set was employed to determine when the network’s general performance was

maximized through early stopping. And the testing data set was used to evaluate the

generalization ability of the trained network (U.S.EPA, 1999). In the training process, small

weights were assigned randomly to the connections between neurons. Then the weights, and

biases were modified until the error between the predicted data and the observed data was

minimized based on the topology of the ANN and the learning technique. It is desired that the

difference between the predicted and the observed values in the output vector be as small as

possible. In the testing process, the network was tested for its generalization ability with the

observed output after the training process was completed. When the neural networks are tested

successfully, they can be used for prediction.

Neural networks are sensitive to the number of neurons in the hidden layers. Insufficient neurons

can lead to underfitting. Too many neurons can contribute to overfitting, in which all training

points are well fit, but the fitting curve oscillates wildly between these points (Neural Network

Toolbox User’s Guide 5-72). To obtain the best fit to the given data, various neural network

architectures were attempted to obtain optimal models for predicting RI as a function of Weight

and Height. The feedforward backpropagation (BP) algorithm was applied to all the neural

network development in this study. The BP is an approximate steepest descent algorithm where a

11

mean square error serves as the performance index. It is widely employed in all areas of ANN

application.

In the neural network development, different scenarios on the number of hidden layers, the

number of neurons in each layer, and the type of transfer function for each neuron were analyzed.

Then the trained networks were tested using the testing data sets and the minimum squared error

(MSE) method by modifying the network weights. It has been noticed that networks with two

hidden layers of neurons may tend to remember the training data instead of generalizing it into

patterns (Grubert, 2003). so, one hidden layer networks were tried. By increasing the amount of

neurons in the hidden layer, the training objective was achieved successfully.

The best network for the RI had one hidden layer with 10 neurons.. The transfer functions were

sigmoidal for the hidden neurons, and linear for the input and output neurons. With these transfer

functions, a three-layer network can approximate any function with arbitrary accuracy.

Multiple Linear Regression

A more traditional statistical forecasting tool is regression analysis. This method uses the sum

of the least squared errors to fit a curve to a data set. We predicted the RI values using the

same data used in the Neural Networks. The dependant variable was designated as the R and

the independent variables are Weight(kg) and height(m)

Using the data analysis tool in SPSSv16, a multiple linear regression analysis was performed

on the data set and the equation is:

 𝐑𝐨𝐡𝐫𝐞𝐫′𝐬 𝐢𝐧𝐝𝐞𝐱 = 𝟒𝟎. 𝟏𝟑𝟔 + 𝟎. 𝟐𝟒𝟎(𝐁𝐎𝐃𝐘𝐖𝐄𝐈𝐆𝐇𝐓(𝐊𝐆)) − 𝟐𝟒. 𝟔𝟔𝟎(𝐇𝐄𝐈𝐆𝐇𝐓(𝐌)

Data Presentation

12

ANN20 performance regression

train 3.690243132567453e-09 0.999999999868584

validation 2.765475512676415e-05 0.999999203046382

.test 1.874043346279464e-05 0.999999623384292

Epoch 1000

Table 1: ANN20 Performance

ANN15 performance regression

train 9.340705086931404e-09 0.999999999701148

validation 2.201611379627460e-05 0.999999294451525

.test 4.969942057490335e-04 0.999983381850686

Epoch 1000

Table 2: ANN15 Performance

ANN10 performance regression

train 2.213601131531583e-09 0.999999999929355

validation 3.805841827053738e-05 0.999998881356107

.test 1.379864877546815e-08 0.999999999566209

Epoch 1000

Table 3: ANN10 Performance

ANN5 performance regression

train 7.424439674493788e-08 0.999999997372040

13

validation 1.423893742108638e-07 0.999999990552112

.test 1.002971281270289e-04 0.999999222298562

Epoch 1000

Table 4: ANN5 Performance

Model R R Square

Adjusted R

Square

Std. Error of

the Estimate

Change Statistics

Durbin-Watson

R Square

Change F Change df1 df2 Sig. F Change

1 .984a .969 .968 .70714 .969 1829.325 2 117 .000 2.061

a. Predictors: (Constant), HEIGHT(M),

BODYWEIGHT(KG)

b. Dependent Variable: RI

Table 5: Multiple Regression Model Summary

ANN20(RI)PRE ANN20(RI)PRE ANN20(RI)PRE ANN20(RI)PRE MR(RI)PRE RI

15.3942 15.3937 15.3938 15.3937 15.6004 15.3938

8.9208 8.9165 8.9164 8.916 8.2093 8.9163

10.3822 10.3805 10.3806 10.3809 10.4356 10.3806

8.7129 8.7182 8.7179 8.7176 7.9766 8.7179

14

10.7856 10.7816 10.782 10.7828 10.8315 10.782

21.4912 21.4658 21.4932 21.4929 20.633 21.4932

15.3768 15.3764 15.3767 15.3765 15.5935 15.3767

18.3722 18.3793 18.3704 18.3705 18.0039 18.3704

12.2117 12.213 12.2124 12.2128 12.5925 12.2125

10.2789 10.2847 10.2868 10.2875 10.1334 10.2871

10.6062 10.6062 10.6062 10.6074 10.5849 10.6062

10.8754 10.8768 10.8768 10.8771 11.0417 10.8768

9.4153 9.4153 9.4153 9.4151 8.9352 9.4153

7.5257 7.5523 7.554 7.5553 5.7502 7.5541

12.4662 12.4659 12.466 12.4662 12.8878 12.4661

17.032 17.0315 17.0317 17.0318 17.0244 17.0316

12.3505 12.3477 12.3457 12.3454 13.0022 12.3457

19.4026 17.2822 17.2614 17.2622 18.5358 17.2603

9.8843 9.8885 9.8893 9.8892 9.6819 9.8892

14.736 14.7362 14.736 14.736 15.2703 14.7361

Table 6: ANNs and Multiple regression (RI) Predictions

15

 Figure 2: Graphs of the ANNs and MR predictions

 Figure3: Graphs of ANN10, Multiple Regression and actual RI

16

 Figure 4:Graps of Errors of all the Models

Models R-Squre

ANN20 0.999999999868584

ANN15 0.999999999701148

ANN10 0.999999999929355

ANN5 0.999999997372040

MR 0.969

Table 7: R-squares of all models

17

The R square value represents the proportion of variation in the dependant variable that is

explained by the independent variables. The better the model explains variation in the

dependant variable, the higher the R square value. Without further comparison, the ANN

models best explain variation in the dependant variable, followed by the Regression Model.

In examining Figure , RI vs. All Model Predictions, it is relatively easy to visually verify

that the network models perform better than the regression model. This differs from the

model ranking due to R square values.

In Table 8 , the ranked error statistics are provided for comparison. These statistics

are all based on RI error.

Models Means Std

ANN20 -0.1054 0.4795

ANN15 -2.0000e-005 0.0083

ANN10 -3.5000e-005 2.6611e-004

ANN5 -2.5000e-004 5.9956e-004

MR 0.0694 0.6556

Table 8: Means and Std of all models

Ideally, the mean error would be zero and the standard deviation would be as small as

possible. All of the models' means are relatively close to zero. However, the breakout occurs

with standard deviation. The larger the standard deviation the greater the range of error, so

ANN10 Network is more accurate.

18

 Conclusion

ANNs and statistical methods have similarities in many aspects. Both approaches are used to

model a relationship between the dependent and independent variables. It has been observed

that any generalized linear model can be mapped onto an equivalent single-layer neural

network (Warner and Misra, 1996). For example, given the linear equation = β0 + β1X1 +

⋯ + βnXn , the independent variable (xi) correspond to the inputs of the neural network and

the response variable y to the output. The coefficients, i , correspond to the weights in the

neural network. There are differences between ANNs and statistical regression models. In

regression models a functional form is imposed on the data. In the case of multiple linear

regression this assumption is that the outcome is related to a linear combination of the

independent variable. If this assumed model is not correct, it will lead to error in the

prediction. So traditional linear models are simply inadequate when it comes to modeling

data that contains non-linear characteristics. While ANN models do not assume any

functional relationship and let the data define the functional form. Thus ANNs is extremely

useful when there is no idea of the functional relationship between the dependent and

independent variables.

Recommendations

The potential of artificial neural network methodology has been highlighted for successfully

tackling the realistic situation in which exact nonlinear functional relationship between

response variable and a set of predictors is not known.

Although ANNs may not be able to provide the same level of insight as many statistical

models do, it is not correct to treat them as “black boxes”. In fact, one active area of research

19

in ANN is ‘understanding the effect of predictors on response variable’. It is hoped that, in

future, research workers would start applying some of the other more advanced ANN models,

like ‘Radial basis function neural network’, and ‘Generalized regression neural network’ in

their studies.

20

 Reference

Anmala, J., Zhang, B., and Govindaraju, R.S (2000). “Comparison of ANNs and
Empirical Approaches for Predicting Watershed Runoff” Journal of Water Resources
Planning and Management, Vol. 126, No.3 May/June, 2000, page 156-166.

Atiya, A.F, El-Shoura, S. M, Shaheen, S.I., and El-Sherif, M. S (1999). “A comparison
Between Neural-Network Forecasting Techniques – Case Study: River Flow
Forecasting” IEEE Transactions on Neural Network, Vol. 10, No. 2, March 1999.

Brion, Gail Montgomery and Lingireddy, Srinivasa (1999). “A Neural Network
Approach to Identifying Non-Point Sources of Microbial Contamination.” Water
Resources. Vol. 33 No. 14 pp. 3099-3106. 1999.

Elshorbagy A, Simonovic S.P and Panu U.S. (2000). “Performance Evaluation of
Artificial Neural Networks for Runoff Predication” Journal of Hydrologic Engineering.
Vol.5, No. 4, October, 2000. 424-427.

Haykin, S. (1994). Neural networks: a comprehensive foundation. Mac-Millan. New
York.

Hsu, K., Gupta, H.V., and Sorooshian, S. (1995). “Artificial neural network modeling of
the rainfall-runoff process.” Water Resources Research, vol. 31, No. 10, Page 2517-2530.

Kuligowski, R.J., and Barros A.P (1998). “Experiments in short-term precipitation
forecasting using artificial neural networks.” Mon. Wea. Rev., 126, 470-482.

Liong, Shie-yui, Lim, W. and Paudyal, G. N., (2000). “River stage forecasting in
Bangladesh: Neural network approach.” Journal of Computing in Civil Engineering. Vol.
14, No. 1. January, 2000. Page 1-8.

Maier, H. R., and Dandy, G. C (1996). “The use of artificial neural networks for the
prediction of water quality parameters.” Water Resources Research, vol. 32, No. 4,
1013-1022 pp.

Rogers, L.L. and Dowla, F.U. (1994). “Optimization of groundwater remediation using
artificial neural networks with parallel solute transport modeling.” Water Resources
Research. 30, 2: 457-481.

Sajikumar, N., and Thandaveswara, B.S. (1999). “A non-linear rainfall-runoff model
using an artificial neural network.” Journal of Hydrology, 216 (1999) 32-55.

Smith, J. and Eli, R.N. (1995). “Neural-network models of rainfall-runoff process.”
Journal of Water Resources Planning and Management, Vol. 121, No.6
November/December, 1995, page 499-508.

21

Tokar, A.S, and Johnson, P.A (1999). “Rainfall-Runoff Modeling Using Artificial Neural
Networks”. Journal of Hydrologic Engineering. Vol.4, No. 3, July, 1999. 232-239.
Warner, B., and Misra, M. (1996). “Understanding Neural Networks aas Statistical
Tools” The American Statistician, 50, 284-293.

Zealand, C.M., Burn, D.H., and Simonovic S.P. (1999). “Short term streamflow
forecasting using artificial neural

	INTRODUCTION
	Calculating Rohrer's Index
	Uses of Rohrer's Index

