
1 
 

                 Rohrer's index Prediction using neural network 
                                                    * Olaiju O.A 

      olaiju@yahoo.com 

                                                       - Are S.O  

    oloruntoba22@yahoo.com 

                  + Ojuawo Olutayo Oyewole, 

                                            teemana2000@yahoo.com                                                              
              + Department of Computer Science, Federal Polytechnic Ilaro      

       -* Department of Mathematics and Statistics, Federal Polytechnic Ilaro   

                                                       ABSTRACT 

Artificial neural networks can be considered effective in making Predictions in which 

traditional methods and statistics are not suitable. In this article, by using two-layer 

feedforward network with tan-sigmoid transmission function in input and output layers, we 

can anticipate the prediction of Rohrer Index  an anthropometric statistic which combines the 

height and weight of an individual into a singular metric used to classify individuals into the 

following categories: severely underweight, underweight, normal, overweight, and obese. We 

compare different artificial neural networks architectures with the traditional multiple 

Regression model. , Ideally the mean error would be zero and the standard deviation would 

be as small as possible in other to pick the best model. All of the models' means are relatively 

close to zero. However, the breakout occurs with standard deviation. The larger the standard 

deviation the greater the range of error, so ANN10 model perfumed best in predicting the 

Rohrer Index.  
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INTRODUCTION 

Rohrer’s Index is an anthropometric statistic which combines the height and weight of an 

individual into a singular metric. The Rohrer’s Index and the Body Mass Index (BMI) serve a 

similar purpose in that both measures can be used to classify individuals into the following 

categories: severely underweight, underweight, normal, overweight, and obese. The BMI 

measurement assumes the body is a two-dimensional square sheet and it measures weight per 

square unit of area, whereas the Rohrer’s Index assumes the body is a three-dimensional cube 

and measures weight per cubic unit of volume. The Rohrer’s Index therefore takes into 

consideration one’s width and girth unlike the BMI measurement, and assumes that width and 

girth are proportional to one’s height. The index is identical with the Ponderal Index. 

Calculating Rohrer's Index 

The formula for calculating the Rohrer’s Index is: 

In metric units:   Body weight(g)×100

(Height(cm))3   

 

In Imperial units: Body weight(lb)×2768

(Height(in))3    

Uses of Rohrer's Index 

Once calculated the Rohrer’s Index measurement can be used for many purposes. One 

recently investigated usage of the Rohrer’s Index is medical underwriting. Medical 

underwriters typically use height and weight or BMI as a component in the determination of 

an individual’s health status because one’s build can be correlated to specific chronic health 

conditions such as diabetes and heart disease. Rohrer’s Index is thought of by some to be 

preferable to BMI because the threshold values used in the risk stratification of individuals 

http://en.wikipedia.org/wiki/Anthropometry
http://en.wikipedia.org/wiki/Body_Mass_Index
http://en.wikipedia.org/wiki/Ponderal_index
http://en.wikipedia.org/wiki/Medical_underwriting
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during the underwriting process are more consistent than those of BMI, allowing for the 

creation of improved and refined predictive health cost models.  

In this paper we compare the ability of neural network to predict accurately the Rohrer’s 

index against that of the traditional Multi linear regression. 

 

Artificial Neural Networks (ANN) 

 

ANNs are based on the present understanding of the biological nervous systems. An ANN is 

a massively parallel-distributed information processing system that has certain performance 

characteristics resembling biological neural networks of the human brain (Haykin 1994). The 

network consists of layers of parallel processing elements, called neurons. In most networks, 

the input layer receives the input variables for the problem at hand. This consists of all 

quantities that can influence the output. The output layer consists of values predicted by the 

network and thus represents model output. Between the input layer and output layer there 

may be one or more hidden layer. The neurons in each layer are connected to the neurons in a 

proceeding layer by a weight, w, which can be adjusted during training. The networks are 

organized by training methods, which greatly simplify the development of specific 

applications. Classical logic in ordinary artificial intelligence (AI) systems is replaced by 

vague conclusions and associative recall. This is a big advantage in all situations where no 

clear set of logical rules can be given. Figure 1 illustrates a three-layer neural network 

consisting of four neurons in input layer, four neurons in hidden layer and two neurons in 

output layer, with the interconnection weights between layers of neurons. 
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ANNs Training: 

Training network is a procedure during which ANN processes a training set (inputoutput data 

pairs) repeatedly, changing the values of its weights, according to a predetermined algorithm, 

to improve its performance. 

 

 

 

Figure 1 Configuration of Three-layer Neural Network 

 

Back-propagation is perhaps the most popular algorithm for training ANNs. The back-

propagation algorithm gives a prescription for changing the weights, wji, in any feedforward 

network to learn a training vector of input-output pairs. It is a supervised learning method in 

which an output error is fed back through the network, altering connection weights so as to 

minimize the error between the network output and the target output. The following equation 

is used for the connection weights adjustment. 

 

∆Wij(n) =  − ε ∗ (
∂E

∂Wij
) +  α ∗ ∆Wij(n − 1)                       (1) 
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Where 

wij(n) and wij(n-1) = weight increments between node i and j during the nth and (n-1)th 

pass, or epoch. 

= learning rate. 

= momentum. 

The momentum factor can speed up training in very flat regions of the error surface and help 

prevent oscillations in the weights. A learning rate is used to increase the chance of avoiding 

the training process being trapped in local minima instead of global minima. Back-

propagation is a first-order method based on the steepest gradient decent, with the direction 

vector being set equal to the negative of the gradient vector. Consequently, the convergence 

may progress slowly and may show oscillatory behavior. It is also possible for the training 

process to be trapped in the local minimum despite the use of learning rate. The network 

architecture is required to be prefixed by trials to do so 

 

Advantages of ANN Models 

 

ANNs offer valuable characteristics unavailable together elsewhere (Zealand et al. 1999): 

ANN models infer solutions from data without prior knowledge of the regularities in the data; 

they extract the regularities empirically. ANN networks learn the similarities among patterns 

directly from instances or examples of them. ANNs can modify their behavior in response to 

the environment (i.e. shown a set of inputs with corresponding desired outputs, they self 

adjust to produce consistent responses). ANNs can generalize from previous examples to new 

ones. Generalization is useful because real-world data are noisy, distorted, and often 

incomplete. ANNs are also very good at the abstraction of essential characteristics from 

inputs containing irrelevant data. ANN models are non-linear; that is, they can solve complex 
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problems more accurately than linear techniques do. ANN models can provide predications 

of output parameters in real time in response to simultaneous and independent fluctuations of 

the values of model input parameters. Finally, ANNs are highly parallel. They contain many 

identical, independent operations that can be executed simultaneously, often making them 

faster than alternative methods. 

 

Development of ANN Models 

 

Selection of Model Inputs and Outputs The selection of appropriate input variables for 

proper mapping desired output variables is a very important step to ensure successful 

application of ANN models in hydrologic processes. Normally, it starts with a set of inputs 

that are KNOWN to affect the process, then add other inputs that are suspected of having a 

relationship in the process one at a time. A good understanding of the hydrologic system can 

lead to better choice of input variables for proper mapping. This will help in avoiding loss of 

information that may result if key variables are omitted, and also prevent inclusion of 

spurious inputs that tend to confuse the training process. A sensitivity analysis can be used to 

determine the relative importance of a variable (Maier and Dandy 1996) when sufficient data 

is available. The input variables that do not have a significant effect on the performance of an 

ANN can be trimmed from the input vector, resulting a more compact network. (Liong, Lim 

and Paudyal 2000). 

 

 Hidden Layer Size The number of neurons in the input and output layers is determined by 

the number of input and output variables for a given system. The size of a hidden layer is one 

of the most important considerations when solving actual problems using multilayer 

feedforward networks. If there are fewer hidden layer neurons, there may not be enough 
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opportunity for the neural network to capture the intricate relationships between indicator 

parameters and the nature of contaminating source. Too many hidden layer neurons not only 

require a large computational time for accurate training, but may also result in ‘overtraining’ 

(Brion et. al, 1999). A neural network is said to be ‘overtrained’ when the network focuses on 

the characteristics of individual data points rather than just capturing the general patterns 

present in the entire training set. 

The following function can be recommended calculating the number of neurons in 

hidden layer: (http://www.neuralware.com/frequent.htm) 

 

N =  (Number of input +  output) ∗ (
2

3
)                (2)                                              

Where 

N = the number of neurons in hidden layer. 

 

 Data Initialization 

 

The contribution of an input/output will depend heavily on its variability relative to other 

inputs/outputs. If one input/output has a range of 0 to 1, while another input/output has a 

range of 0 to 1,000,000, then the contribution of the first input/output to the distance will be 

swamped by the second input/output. So it is essential to rescale the inputs/outputs so that 

their variability reflects their importance, or at least is not in inverse relation to their 

importance. One of the most useful ways to standardize inputs is mean 0 and standard 

deviation 1 method, which is shown as following: N 

 

meani =
∑ Xi

N
                                                     (3) 

http://www.neuralware.com/frequent.htm
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std = √
∑(Xi

2 − meani)

N − 1
                                  (4) 

Si =
Xi − meani

Std
                                                (5) 

 

Xi = value of the raw input/output variable X for the ith training case. 

Si = standardized value corresponding to Xi. 

N = number of training cases 

Once the output values are obtained from an ANN model, the actual values are obtained 

by the inverse transformation of the equation: 

 

T = O × Std +  mean                                       (6) 

 

T = Actual Output Value 

O = output from ANN model. 

 

Some Other Inspects 

 

Initialization of weights and threshold values is an important consideration. The closer the 

initial guess is to the optimum weight space, the faster the training process. However, there is 

no way of making a good initial guess of weights, and they are initialized in a random 

fashion. Learning rate affect the speed of convergence. If it is large, the weights will be 

changed more drastically, but this may cause the optimum to be overshot. If it is small, the 

weights will be changed in smaller increments, thus causing the system to converge more 

slowly with little oscillation. Normally it is in the range of 0.2 to 0.5. 
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 Software Support 

 

The software used for this study are  Matlab (version 7.6.0(R2008a)). Matlab is developed by 

The  Math Works, Inc.. and SPSS v16 

. 

Several authors have done comparison studies between ANNs against traditional linear and 

non-linear regression methods in many field of studies (Anmala et al. 2000, Tokar and 

Johnson 1999, Zhang et al. 2000, Elshorbagy et al 2000). The results showed that the 

artificial neural network model generally performs better than other regression models in 

terms of accuracy and consistency. 

 

Development of Neural Network Models  

 

Neural network models are developed through the following steps:  

1. Complete historical data analysis and literature reviews to establish the air quality and 

precipitation chemistry phenomena that influence acid rain conditions.  

2. Select parameters that accurately represent these phenomena and are readily available on a 

forecast basis.  

3. Identify the most significant variables based on mass balance and statistical analysis 

techniques.  

4. Create three data sets: 1) a training data set to train the network, 2) a verification data set to 

determine when the network’s general performance is maximized through early stopping, and 3) 

a testing data set to evaluate the generalization ability of the trained network. The developmental 

data sets should contain enough data.  

5. Train the data using neural network models and discover the most appropriate network 

architecture for the problem.  
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6. Test the generally trained network on a test data set to evaluate the performance. If the results 

are satisfactory, the network is ready to be used for forecasting 

 

The neural network models were developed using MatLab.  100 data sets were available for the 

network Data were separated into three groups: training, verification and testing 

(www.statsoft.com/textbook/stneunet.html).  

The 100 data sets were randomly divided into three groups: 70 as training sets, 15 as verification 

sets and 15 as testing set. The training set was used to develop the neural network. The 

verification set was employed to determine when the network’s general performance was 

maximized through early stopping. And the testing data set was used to evaluate the 

generalization ability of the trained network (U.S.EPA, 1999). In the training process, small 

weights were assigned randomly to the connections between neurons. Then the weights, and 

biases were modified until the error between the predicted data and the observed data was 

minimized based on the topology of the ANN and the learning technique. It is desired that the 

difference between the predicted and the observed values in the output vector be as small as 

possible. In the testing process, the network was tested for its generalization ability with the 

observed output after the training process was completed. When the neural networks are tested 

successfully, they can be used for prediction.  

 

Neural networks are sensitive to the number of neurons in the hidden layers. Insufficient neurons 

can lead to underfitting. Too many neurons can contribute to overfitting, in which all training 

points are well fit, but the fitting curve oscillates wildly between these points (Neural Network 

Toolbox User’s Guide 5-72). To obtain the best fit to the given data, various neural network 

architectures were attempted to obtain optimal models for predicting  RI as a function of  Weight 

and Height. The feedforward backpropagation (BP) algorithm was applied to all the neural 

network development in this study. The BP is an approximate steepest descent algorithm where a 
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mean square error serves as the performance index. It is widely employed in all areas of ANN 

application.  

 

In the neural network development, different scenarios on the number of hidden layers, the 

number of neurons in each layer, and the type of transfer function for each neuron were analyzed. 

Then the trained networks were tested using the testing data sets and the minimum squared error 

(MSE) method by modifying the network weights. It has been noticed that networks with two 

hidden layers of neurons may tend to remember the training data instead of generalizing it into 

patterns (Grubert, 2003). so, one hidden layer networks were tried. By increasing the amount of 

neurons in the hidden layer, the training objective was achieved successfully.  

The best network for the  RI  had one hidden layer with 10 neurons.. The transfer functions were 

sigmoidal for the hidden neurons, and linear for the input and output neurons. With these transfer 

functions, a three-layer network can approximate any function with arbitrary accuracy. 

 

Multiple Linear Regression 

A more traditional statistical forecasting tool is regression analysis. This method uses the sum 

of the least squared errors to fit a curve to a data set. We predicted the  RI values using the 

same data used in the Neural Networks. The dependant variable was designated as the R and 

the  independent variables are Weight(kg) and height(m)  

Using the data analysis tool in SPSSv16, a multiple linear regression analysis was performed 

on the data set and the equation is: 

 

  𝐑𝐨𝐡𝐫𝐞𝐫′𝐬 𝐢𝐧𝐝𝐞𝐱 = 𝟒𝟎. 𝟏𝟑𝟔 + 𝟎. 𝟐𝟒𝟎(𝐁𝐎𝐃𝐘𝐖𝐄𝐈𝐆𝐇𝐓(𝐊𝐆)) − 𝟐𝟒. 𝟔𝟔𝟎(𝐇𝐄𝐈𝐆𝐇𝐓(𝐌) 

 

Data Presentation  
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ANN20 performance regression 

train 3.690243132567453e-09 0.999999999868584 

validation 2.765475512676415e-05 0.999999203046382 

.test 1.874043346279464e-05 0.999999623384292 

Epoch 1000  

Table 1: ANN20 Performance 

 

ANN15 performance regression 

train 9.340705086931404e-09 0.999999999701148 

validation 2.201611379627460e-05 0.999999294451525 

.test 4.969942057490335e-04 0.999983381850686 

Epoch 1000  

Table 2: ANN15 Performance 

 

ANN10 performance regression 

train 2.213601131531583e-09 0.999999999929355 

validation 3.805841827053738e-05 0.999998881356107 

.test 1.379864877546815e-08 0.999999999566209 

Epoch 1000  

Table 3: ANN10 Performance 

 

ANN5 performance regression 

train 7.424439674493788e-08 0.999999997372040 
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validation 1.423893742108638e-07 0.999999990552112 

.test 1.002971281270289e-04 0.999999222298562 

Epoch 1000  

 

Table 4: ANN5 Performance 

 

 

 

 

 

 

 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

Durbin-Watson 

R Square 

Change F Change df1 df2 Sig. F Change 

1 .984a .969 .968 .70714 .969 1829.325 2 117 .000 2.061 

a. Predictors: (Constant), HEIGHT(M), 

BODYWEIGHT(KG) 

      

b. Dependent Variable: RI        

Table 5: Multiple Regression Model Summary 

 

ANN20(RI)PRE ANN20(RI)PRE ANN20(RI)PRE ANN20(RI)PRE MR(RI)PRE RI 

15.3942 15.3937 15.3938 15.3937 15.6004 15.3938 

8.9208 8.9165 8.9164 8.916 8.2093 8.9163 

10.3822 10.3805 10.3806 10.3809 10.4356 10.3806 

8.7129 8.7182 8.7179 8.7176 7.9766 8.7179 
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10.7856 10.7816 10.782 10.7828 10.8315 10.782 

21.4912 21.4658 21.4932 21.4929 20.633 21.4932 

15.3768 15.3764 15.3767 15.3765 15.5935 15.3767 

18.3722 18.3793 18.3704 18.3705 18.0039 18.3704 

12.2117 12.213 12.2124 12.2128 12.5925 12.2125 

10.2789 10.2847 10.2868 10.2875 10.1334 10.2871 

10.6062 10.6062 10.6062 10.6074 10.5849 10.6062 

10.8754 10.8768 10.8768 10.8771 11.0417 10.8768 

9.4153 9.4153 9.4153 9.4151 8.9352 9.4153 

7.5257 7.5523 7.554 7.5553 5.7502 7.5541 

12.4662 12.4659 12.466 12.4662 12.8878 12.4661 

17.032 17.0315 17.0317 17.0318 17.0244 17.0316 

12.3505 12.3477 12.3457 12.3454 13.0022 12.3457 

19.4026 17.2822 17.2614 17.2622 18.5358 17.2603 

9.8843 9.8885 9.8893 9.8892 9.6819 9.8892 

14.736 14.7362 14.736 14.736 15.2703 14.7361 

Table 6: ANNs and Multiple regression  (RI) Predictions 
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 Figure 2: Graphs of the ANNs and MR predictions 

 

 

 Figure3: Graphs of ANN10, Multiple Regression and actual RI  
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 Figure 4:Graps of Errors of all the Models 

 

 

 

Models R-Squre 

ANN20 0.999999999868584 

ANN15 0.999999999701148 

ANN10 0.999999999929355 

ANN5 0.999999997372040 

MR 0.969 

Table 7: R-squares of all models 
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The R square value represents the proportion of variation in the dependant variable that is 

explained by the independent variables. The better the model explains variation in the 

dependant variable, the higher the R square value. Without further comparison, the ANN 

models  best explain variation in the dependant variable, followed by the Regression Model. 

In examining Figure    , RI vs. All Model Predictions, it is relatively easy to visually verify 

that the network models perform better than the regression model. This differs from the 

model ranking due to R square values. 

 

In Table 8 , the ranked error statistics are provided for comparison. These statistics 

are all based on RI error.  

 

Models Means Std 

ANN20 -0.1054 0.4795 

ANN15 -2.0000e-005 0.0083 

ANN10 -3.5000e-005 2.6611e-004 

ANN5 -2.5000e-004 5.9956e-004 

MR 0.0694 0.6556 

Table 8: Means and Std of all models 

 

Ideally, the mean error would be zero and the standard deviation would be as small as 

possible. All of the models' means are relatively close to zero. However, the breakout occurs 

with standard deviation. The larger the  standard deviation the greater the range of error, so 

ANN10 Network is more accurate.  
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                                      Conclusion  

 

ANNs and statistical methods have similarities in many aspects. Both approaches are used to 

model a relationship between the dependent and independent variables. It has been observed 

that any generalized linear model can be mapped onto an equivalent single-layer neural 

network (Warner and Misra, 1996). For example, given the linear equation = β0 + β1X1 +

⋯ + βnXn , the independent variable (xi) correspond to the inputs of the neural network and 

the response variable y to the output. The coefficients, i , correspond to the weights in the 

neural network. There are differences between ANNs and statistical regression models. In 

regression models a functional form is imposed on the data. In the case of multiple linear 

regression this assumption is that the outcome is related to a linear combination of the 

independent variable. If this assumed model is not correct, it will lead to error in the 

prediction. So traditional linear models are simply inadequate when it comes to modeling 

data that contains non-linear characteristics. While ANN models do not assume any 

functional relationship and let the data define the functional form. Thus ANNs is extremely 

useful when there is no idea of the functional relationship between the dependent and 

independent variables. 

Recommendations 

The potential of artificial neural network methodology has been highlighted for successfully 

tackling the realistic situation in which exact nonlinear functional relationship between 

response variable and a set of predictors is not known. 

Although ANNs may not be able to provide the same level of insight as many statistical 

models do, it is not correct to treat them as “black boxes”. In fact, one active area of research 
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in ANN is ‘understanding the effect of predictors on response variable’. It is hoped that, in 

future, research workers would start applying some of the other more advanced ANN models, 

like ‘Radial basis function neural network’, and ‘Generalized regression neural network’ in 

their studies. 
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