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Abstract  
 

We employed generalized additive models (GAMs) with scatterplot 
smoothers such as cubic smoothing splines and local regression to establish 
non-linear relationships that exist between Nigeria’s domestic output proxy by 
gross domestic products and four macroeconomic variables such as recurrent 
and capital expenditures, crude oil prices and federal government retained 
earnings. Four flexible generalized additive models were postulated. These are 
smoothing splines, local regression, local quadratic regression and composite 
GAM. Generalized Cross-validation and leave-one-out re-sampling techniques 
were employed in determining the effective degrees of freedom and the 
window size or span for smooth splines and local regression additive models 
respectively. We compared models accuracy using the residual deviance for 
the GAMs. Smoothing Splines was selected through a nested analysis of 
deviance on the four postulated models. The minimized penalized residual 
sum of squares optimal tuning parameters 

Ω = 1.2613x10-6, 2.0153x10-6, 
7.9291x10-7 and 1.5286x10-7 for each smoothing functions on federal 
government retained earnings, crude oil prices, recurrent expenditure and 
capital expenditure respectively which control the tradeoff between goodness-
of-fit and smoothness of the smoothing spline model. Analysis shows the 
federal government retained earnings and volatile crude oil prices are the 
major macroeconomic variables that cause instability in the growth of gross 

domestic products in Nigeria. R programming language packages such as 

“splines”,“gam”,“ggplot2”,“boot”and“lattice” amongst others were employed 
throughout the analysis. 
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Introduction 

 
Lawal G.O., Alabi N.O., Ige S.A., Ibraheem R.A. (2016) employed 

autoregressive distributed lag model (ARDL) to establish non-linear 
relationships existing between domestic output and government spending 
with federal government retained earnings and crude oil price as static 
regressors. Our analysis produced a model with minimum bias in domestic 
output, which produced estimates very close to the true values. One 
advantage of this method was that in addition to reduced bias, we were able 
to minimize the variance of the residual error term. Furthermore, since the 
variables are all of the same order one (i.e. I(1)), fitting an ARDL model 
allowed us to establish both the long-run cointegrating relations and short-
run dynamic effects amongst the endogenous and exogenous variables using 



the traditional ordinary least squares method of estimation. However, the 
estimates of the model parameters are average effects that can provide 
limited information about the true pattern inherent in the data. Here, we 
introduce an alternative method of studying the non-linear relationships 
existing between the same set of macroeconomic variables in a non-
parametric manner. This method unlike the ARDL is a semi-parametric and 
non-parametric regression learning method first introduced by Hastie and 
Tibshirani in 1986. It is known as the Variable Coefficient Model or 
Generalized Additive Model (GAM, hereon). GAM belongs to the family of 
Generalized Linear Models (GLM) or the Exponential family of distribution. 
Unlike most members of GLM, GAM replaces the linear predictor of a set of 
predictors with a sum of unspecified smooth functions whose parameters 
are estimated using a scatterplot smoother such as kernel estimate or the 

cubic spline amongst several other methods such as running mean and 

running median (Hastie and Tibshirani, 1986, 1990). Although this 

approach is not popular amongst econometricians, its relevance in terms of 

bias-variance tradeoff optimization and model interpretability cannot be 

overlooked which has made it an important econometric analysis tool in the 

last decade. Our main objective in this current paper is not to duel 

extensively on the literature regarding domestic output and selected 

macroeconomic predictors (refer to Lawal et al (2016) for detailed literature 

review), instead we look at the theoretical framework of GAM vis-à-vis its 

relevance to the available data.
 

 

Generalized Additive Model (GAM) on Nigeria’s GDP and its predictors 

 

We begin by postulating a model in equation 1.1 on domestic output 

proxy by gross domestic products (gdp) and crude oil price (cp), federal 

government retained earnings (fgre), government expenditures proxy by 

recurrent (re) and capital expenditures (ce) using quarterly data collected 

from the database of Central Bank of Nigeria and Nigeria Statistical Bulletin 

between 2004 and 2014. The GAM is of the form; 

 



gdpi  0  f1( fgrei) f2(cpi) f3(rei) f4(cei)i

    1.1 
Each unspecified univariate smooth function fj in equation 1.1 is 

estimated using very fast non-parametric Backfitting algorithm such as 
additive backfitting algorithm with weights (ARBAW) and k-nearest 
neighbours1. The error term is assumed to be distributed normally i.e. 



 i~N(0,



 2
). We assumed for simplicity that each covariate is standardized 

within the [0,1] interval. These two approaches use a scatterplot smoother2 
to generalize the Fisher scoring procedure for calculating MLE (Hastie and 
Tibshirani, 1986,1990). The non-parametric form of the functions fj in 
equation 1.1 allows for relatively flexible pattern of the dependence of gdp on 
the covariates, but by specifying the model only in terms of smooth 

                                                        
1 The fj’s are standardized smooth function such that E[fj(Xj)]=0. Each smooth function 
is only estimable to within an additive constant. 
2 Scatterplot smoother is a method of estimating the smooth non-parametric functions 
fj(.) i.e. splines. According to Wood (2013), yi is usually measured with noise and it is 
generally more useful to smooth xi, yi data rather than interpolating them by setting 
g(xi) as n free parameters of the cubic spline. 



functions. This flexibility and convenience comes at the cost of two 
conjectural problems. It is essential to define the smooth functions involving 
basis dimension and location of region boundary and to determine the 
degree of smoothness controlled by a tuning parameter. According to Cho 
H., Goude Y., Brossat X., and Yao Q. (2013), GAMs allow for implicit non-
linear relationships between the response and the covariates without 
suffering from “curse of dimensionality”. We estimated each of the functions 
in equation 1.1 separately in a forward stepwise manner using the 
scatterplot smoothers. We are able to fit non-linear fj to each predictor 
allowing non-linear relationships missed by a linear model.  

 

Scatterplots of likely association between GDP and its predictors in 
Nigeria from 2004 to 2014 

 

 
Figure 1: Scatterplots on gross domestic products (gdp) and its covariates. 
These plots exhibit some patterns of non-linearity.  
Source: Personal computation using R Studio ggplot2 package (H. Wickham, 
2009). 

 
The Smoothing Splines Model (SSM) on Domestic Output in Nigeria 
 

Firstly, we introduce the cubic spline scatterplot smoother. Later, we 
introduce the localized regression involving window size or span, which is a 
memory-based procedure. The former involves fitting the model in equation 
1.1 by using additive regression backfitting algorithm with weights (ARBAW) 
in which each f1, f2, f3, and f4 are cubic smoothing splines3. The backfitting 

                                                        
3 Smoothing splines result from minimizing a penalized residual sum of squares 
criterion subject to a smoothness penalty. They are natural cubic splines with knots at 
every unique observation of xi. The details are not covered in this research work. 



algorithm (Friedman and Stuetzle, 1981; 1982) generates a smoothing spline 
that minimizes the penalized residual sum of squares in equation 1.2 
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We find the function g or smoothing spline, which minimizes the 

equation 1.2. This function is the shrunken natural cubic spline with region 

boundaries at unique values of xi’s with continuous first and second 
derivatives at each region boundary or knot4. The level of shrinkage is 
controlled by the tuning parameter



 determined by solving equation 1.6.  
Equation 1.2 is a function of residual sum of squares plus a smoothness 
penalty associated with each fj. In order to avoid the excessive flexibility 
associated with smoothing splines when 



 is too low and the over-
smoothness when 



 is too high, we employed the cross-validation re-
sampling method to determine the tuning parameter and the corresponding 
effective degrees of freedom so that the estimated model is as close as 
possible to the true model. Specifically, the generalized cross-validation 
(GCV) approach, which is based on orthogonal rotation of the residual 
matrix such that the diagonal elements of the influence or hat matrix is as 
even as possible5(Wood, 2006). It has been proven that ordinary cross-
validation approach suffers from two major problems. Firstly, there is a 
problem of cost associated with the number of smoothing parameters 
involved. Secondly, there exist a problem of lack of invariance from 
comparing the ordinary cross-validation scores derived from equation 1.4 

 



Y  X
2
 i

T Si
i1

p

                  1.4 

 
and its orthogonal transform 
 



QY QX
2
 i

T Si
i1

p

            1.5 

 
where Q is an orthogonal matrix obtained from the QR decomposition6. 
Generalized cross-validation (GCV) addressed these problems by rotating an 
influence matrix M such that the effective degrees of freedom are the sum of 

the diagonal elements in the matrix 



M . That is  

 

EDF



 = tr(M)              1.6a 

 

                                                                                                                                                               
Additive regression backfitting algorithm with weights (ARBAW) fits a multiple 

predictors model by repeatedly updating the fit for each predictor in turn holding the 
others fixed. This approach uses the scatterplot smoothers to generalize the Fisher 
scoring procedure for calculating MLE (Hastie and Tibshirani, 1986).   
4 It is a natural cubic spline with knots at x1,……xn.  
5 A hat (influence) matrix provides the estimates of vector of E(Y) when post-multiplied 
by the data vector y.  
6 We decompose X into QR where Q is the first p columns of the orthogonal reflector 
matrix.  



g(x ij )  0  f j (x ij )
j1

4





The equation 1.6a is derived from the decomposition of  
 

    



M QMQT

    1.6b 
 

such that if M=VVT, where V is any matrix square root, then  
 

    



M QVV TQT

   1.6c 

 
since the orthogonal matrix Q is such that each row of QV has the 

same mathematical length, the principal elements in the leading 

diagonal of the influence matrix 



M have the same value (see Wahba, 

1990) i.e. 
 

  



tr(M)  tr(QMQT )  tr(MQTQ)  tr(M)     1.6d 
 

Craven and Wahba (1979), Golub G.H., Heath M., and Wahba G., 
(1979) have shown that the generalized cross-validation score expressed in 
equation 1.6e derived from the rotation of the ordinary cross-validation score 
has predicted error unaffected by the rotation. 
 



gcv 
n || y  ˆ ||2

[n  tr(M)]2    1.6e 

 
 The integral part of equation 1.2 measures the overall change in the 
slope gI(t) over its entire range measuring the roughness of the slope. We 
attempt to find the smoothing spline, g that minimizes the function in 
equation 1.2. As the smoothing parameter 



 approaches ∞, the EDF 
decreases7 from n to 2, where n is the sample size (here, n=176). This 
controls the tradeoff between the goodness-of-fit of the model and model 
smoothness. ARBAW allows us to update a function using the partial 
residual. We exploit R programming language packages “splines” and “gam” 
to compute the smoothing parameter, the EDF and diagnostic checks for the 
GAM. The model is estimated as  

 



E(gdpi fgre,cp,re,ce) 1.09220.0265( fgre)i 0.4604(cp)i 0.4320(re)i 0.5610(ce)i 
 

1.7 
Table 1 and Table 2 show the analysis of variance of semi-parametric 

and non-parametric effects of the covariate in the smoothing splines model 
of equation 1.7 respectively. Analysis of the effects of the individual smooth 
splines models indicate that the semi-parametric and non-parametric effects 
of the predictors are all statistically significant at 1 per cent level.  
 
 

 

                                                        
7 If EDF reduce to 2, then all observations are utilized and the resulting curve tallies 
with the least squares regression line. Of course this will result in a model with low 
residual variance but high bias. Hence, the EDF are determined in some ways using 
the cross validation method of re-sampling.  

 



Table 1 ANOVA of semi-parametric effects in smoothing splines model  
Effect Df SS MS F-value p-value 

s(fgre, df=22.52) 1 1476.77 1476.77 310085.00 2.2x10-16* 

s(cp, df=13.06) 1 22.00 22.00 4618.00 2.2x10-16* 
s(re, df=25.27) 1 7.21 7.21 1513.20 2.2x10-16* 

s(ce, df=37.21) 1 11.83 11.83 2483.00 2.2x10-16* 

Residuals 76.94 0.37 0.00   

Table 2 ANOVA of non-parametric effects in smoothing splines model  
Effect Non-parametric df Non-parametric F-value p-value 

s(fgre),df=22.52) 21.50 34.28 2.2x10-16* 

s(cp),df=13.06) 12.10 30.06 2.2x10-16* 

s(re),df=25.27) 24.30 94.23 2.2x10-16* 
s(ce),df=37.21) 36.20 60.34 2.2x10-16* 

Note: * statistically significant at 1 per cent level. Reject the null hypothesis of 
linearity. 
Null Deviance=1482.91 on 175 degrees of freedom, Residual Deviance= 0.37 on 
76.9387 degrees of freedom, AIC= -387.11. Source: Personal computation using R 
Studio “gam” package (Trevor Hastie, 2015). 

By using the “smooth.splines” function in the “splines” package of the 
R Studio programming language, we calculated the optimal tuning 
parameters Ω = 1.2613x10-6, 2.0153x10-6, 7.9291x10-7 and 1.5286x10-7 for 
each smoothing functions fj, j=1,2,3,4 respectively which control the tradeoff 
between goodness-of-fit and smoothness of the model in equation 1.7.  

The null model which estimates one parameter for the data set has a 
deviance of 1482.91. The deviance was reduced to 0.37 with about 76.94 
degrees of freedom, one for the intercept and the remaining for the four 
predictors. This reduction was achieved with probability of 2.2x10-16. The p-
values under the non-parametric ANOVA correspond to the null hypothesis 
of linearity versus the alternative of non-linear relationship. Extremely low 
p-values for all the smoothing functions indicate non-linear functions are 
sufficient for all the terms in the model in equation 1.7. Also, we tested for 
evidence of lack of fit using the residual deviance or residual sum of squares 
and the degree of freedom by conducting the deviance test.  This test give a 
maximum Chi-square p-value = 1.00 showing no evidence of lack of fit. 

 
Smoothing Splines plots showing relationships between gross 

domestic products and its predictors 

 



 
 
Figure 2: Smooth spline plots of the relationships between each predictor and 
the gross domestic products (gdp) in the fitted model (equation 1.7). Each plot 
displays the relationship between Xj versus Y holding the remaining predictors 
constant in the model. Also, each plot shows the fitted function and 2 times 
standard errors8. All functions are smoothing splines with 22.52, 13.06, 25.27 
& 37.21 EDF respectively.  
Source: Personal computation using R Studio “splines” package (R Core team, 
2016). 
 

In Figure 2, the response variable gdp is expressed in terms of mean 
deviation, thus each smooth function fj is centred and represents how gdp 
changes relative to its mean with unit changes in the predictors. Hence, the 
zero value on the response-axis is the mean of gdp. The upper left panel 
shows that holding all other predictors fixed, gross domestic products rise 
with low, intermediate and high values of federal  government retained 
earnings (fgre). The upper right panel showing the effect of crude oil prices 
on gdp indicate that gdp continue to rise for every increase in crude oil price 
(cp). However, there was a sharp rise in  gdp from $80 per barrel mark. The 
lower left panel of Figure 2 shows the effects of recurrent expenditures (re) 
on gdp is also positive on gdp.  The lower right panel indicate that holding 

all other covariates fixed, gdp remained stable for every increase in the value 
of capital expenditures (ce) above the N400 billion mark.  
 
The Local Regression Model (LRM) on Domestic Output in Nigeria 
 

Since p = 4,  we postulated another model in equation 1.1 referred to 
as the local regression based on local scoring. Its methodology involves 
estimating the effects in equation 1.1 at a target point using only the nearby 
observations. For each function of the predictors fj in equation 1.1, we 
computed a span h = k/n of training observations closest to xo, k is the 
number of observations in the neighbourhood. We then assign a weight Wio = 
W(xi,xo) to each point in the neighbourhood. A weighted least squares 
regression of Yi on Xi using the Wio was fitted by minimizing  

 



i1

n

W io(Yi  o  1X i)
2

                                  1.8       

                                                        
8 The dotted curve is the estimated 95 per cent confidence interval for the smoothing splines. 



We assumed a linear form for the functions and calculated the span h 
using the efficient cross-validation approach. Span selection was done by 
employing the expensive leave-one-out cross-validation of the deviance or 
residual sum of squares in order to obtain an unbiased approximation of the 
Kullback-Liebler distance.  This method selected span of ~0.29, ~1.63, 
~0.30, ~0.46 for the local regression functions on federal government 
retained earnings, crude oil prices, recurrent expenditure and capital 
expenditure respectively. Therefore, k the number of nearest observations is 
51, 287, 52 and 81 for f1, f2 , f3 and f4 respectively. The lower the value of h, 
the “wigglier” the curve. Also, smaller values of h imply that the curve is 
more flexible and “local” (Figure 3) which reduces the model bias, at the 
same time minimizing the variance proportionately. The local regression fit 

on gdp results in equation 1.9 below with the resultant local plots shown in 
Figure 3.  
 



E(gdpi / fgre,cp,re,ce)  2.18 0.34 fgre 0.26cp  0.09(cp)2  0.48re 0.18ce   1.9 
 

Table 3 ANOVA of semi-parametric effects in local regression model  
Effect df SS MS F-value p-value 

Lo(fgre,h=0.29) 1 1469.95 1469.95 525208.37 2.2x10-16* 

lo(cp,h=1.63,degree=2) 2 7.24 3.62 128.63 2.2x10-16* 

lo(re,h=0.30) 1 7.58 7.58 269.35 2.2x10-16* 

lo(ce,h=0.46) 1 0.86 0.86 30.51 1.4x10-7* 

Residuals 154.98 4.35 0.03   

Table 4 ANOVA of non-parametric effects in local regression model  
Effect Non-parametric df Non-parametric F-value p-value 

lo(fgre, h=0.29) 6.8 6.25 2.4x10-6* 
lo(cp, h=1.63,degree=2) 0.1 4.69 0.0585*** 

lo(re, h=0.30) 5.5 20.64 2.2x10-16* 

lo(ce, h=0.46) 3.0 30.30 1.3x10-15* 

Note: *,*** statistically significant at 1 per cent and 10 per cent levels, do not accept 
the null hypothesis of linearity. Null Deviance=1482.91 on 175 degrees of freedom, 
Residual Deviance= 4.35 on 154.98 degrees of freedom, AIC= -106.86.  
Source: Personal computation using R Studio “gam” package (Trevor Hastie, 2015). 

 
Table 4 shows that only the local function on crude oil price has a 

significant non-parametric and non-linear effect in the gross domestic 
products model of equation 1.9 only at10 level of significance. This indicates 
a local polynomial fit between cp and gdp. A reduced deviance from 1482.91 
to 4.35 with 154.98 degrees of freedom was achieved on this model. Similar 
to the smooth spline model, the deviance test on the local regression model 
give a maximum Chi-square p-value = 1.00 indicating no evidence of lack of 
fit. 
 
 
 
 
 
 
 
 
 
 
 
 



Local regression plots showing relationships between gross domestic 

products and its predictors 
 

 

 
 

Figure 3: Plots of the relationships between each predictor and the gross 
domestic products (gdp) in the fitted model (equation 1.9). Each plot displays 
the fitted function and two times standard errors. All functions are local 
regression with h=0.29, 1.63, 0.30 and 0.46 for fgre, cp, re and ce 
respectively. Source: Personal computation using R Studio “gam” package 
(Trevor Hastie, 2015). 
 



Generally, the curves in Figure 3 are smoother than Figure 2, which 
is especially obvious in the cases of functions on federal government 
retained earnings, crude oil price and capital expenditures.  However, the 
acceptance of the null hypothesis of linearity for the function crude oil prices 
is surprising. We suggest a further postulation whereby the function on 
crude oil prices will be local polynomial of degree 2. 
 

Local Quadratic Regression Model and Composite GAM on Domestic 

Output in Nigeria 
  

Next we introduced a polynomial of degree 2 (i.e. Local Quadratic 
Regression) in the model on local regression (equation 2.0) and a composite 
GAM in which some of the functions in equation 1.1 are local regression and 
the remaining are smooth splines (equation 2.1). These are to ensure we 
achieve models with reduced deviances and stronger predictability. 
Specifically, for the composite GAM, we specify a smooth spline function for 
the additive model on crude oil price due largely to its high window size 
h=1.63 and k=287 nearby observations in equation 1.9. We summarize the 
results in Table 5 below; 

 

 
       2.0 



E(gdpi / fgre,cp,re,ce) 1.32680.3173fgrei 0.3180cpi 0.4243rei 0.2429cei 
       2.1

 

Table 5: Summary of analysis of Local Quadratic Regression and Composite 

GAM 

Model Type # Effects 

#Significant 

effects 

Null 

Deviance 

Residual 

Deviance AIC 

Local 

Quadratic 

Regression 8 7 1482.91 2.69 -171.10 

Local 
Composite 

GAM 8 8 1482.91 2.72 -167.99 

 

Local Quadratic regression plots showing relationships between gross 
domestic products and its predictors 

 

 



E(gdpi / fgre,cp,re,ce) 1.636 0.4242 fgrei  0.520( fgrei)
2  0.1592cpi  0.288(cpi)

2  0.3357rei  0.0203(rei)
2  0.3632cei  0.0055(cei)

2



 
Figure 4:Plots of the local polynomial regression of degree = 2 of gross 
domestic products (gdp) on the predictors in the fitted model (equation 1.9). 
Each plot displays the fitted function and two times standard errors.  
Source: Personal computation using R Studio “gam” package (Trevor Hastie, 
2015). 
 
Composite GAM plots showing relationships between Domestic Output 

and its predictors 

 

 

 
Figure 5: Composite GAM with smoothing spline function on crude oil price 
and local regression functions on federal government retained earnings, 
recurrent and capital expenditures. Source: Personal computation using R 
Studio “gam” package (Trevor Hastie, 2015). 
 



In Figure 5, the upper right panel shows the smooth spline on crude 
oil price indicating a rather unstable effect on gross domestic products. This 
plot is wigglier than the smooth function in Figure 2. These two models 
show no evidence of lack of fit with high Chi-square p-value = 1.00 and 1.00 
respectively. The main aim of this current work is find an optimal model for 
predicting the gross domestic products. Hence, we conducted a nested 
analysis of deviance on the four postulated models as follows. 

 
Table 6 Analysis of deviance on four postulated models 

*Indicate model is superior to the previous model at 1 per cent level of significance. 
Source: Personal computation using R Studio “gam” package (Trevor Hastie, 2015). 
 

Analysis of deviance in Table 6 above shows the residual degrees of 
freedom, residual deviance, model deviance and the chi-square p-value of 
achieving a lower deviance for each of the postulated models. This analysis 
indicates that whilst composite GAM is better than the local regression, 
smoothing splines is the best out of the four models. However, the test is 
inconclusive for local quadratic regression over composite GAM because the 
degree of freedom was less than one. Specifically, a lower deviance of 1.67 
and 2.35 was recorded for Composite GAM and smoothing splines 
respectively with a probability of 2.2x10-16 each. Hence, the smoothing 
splines provide the best estimates for the actual gross domestic products 
values during the period under review as shown in the Figure 6. 
Furthermore, we employed a simple graphical assessment technique to 
compare the residuals of the four models using a boxplot (Figure 6). 
 

Smoothing splines superimposed on scatterplots showing long-term 

trend between gross domestic products and its predictors 

 

 
 

Model Residual df Residual 

Deviance 

Deviance Pr(>Chi-

square) 

Local Regression 154.98 4.35   

Composite GAM 143.65 2.72 1.67 2.2x10-16 * 
Local Quadratic Regression 144.13 2.68 -0.03  

Smoothing Splines 76.94 0.37 2.35 2.2x10-16 * 



 
Figure 6: Scatterplots with superimposed smoothing splines of the 
relationships between each predictor and the gross domestic products (gdp) in 
the fitted model (equation 1.7). Each plot shows various flexibilities and 
existence of non-linear long-term trend between gdp and the predictors.  
Source: Personal computation using R Studio “splines” package (R Core 
Team, 2016). 

 

 
Figure 7: Boxplot on residuals of smoothing splines, local regression, local 
quadratic regression and composite GAM models, which shows the upper, mid 
and lower quartiles are quite different for all the GAMs. Local regression, local 
quadratic regression and Composite GAM have extreme residuals 
concentrated outside the lower whisker outside. On the plots of predicted 
values of the gross domestic products in Nigeria from 2004 to 2014, it is 
obvious that the prediction power of the smoothing splines model is strongest 
especially from periods after 2009, which confirms the superiority of the model 
over the others. 
 

The two plots in Figure 7 alongside the analysis of deviance in Table 
6 favor the model in equation 1.7 on smoothing splines for studying and 
predicting gross domestic products in Nigeria between 2004 to 2014. Figure 
6 depicts the fitted lines of each of the smoothing splines function in 
equation 1.7 against the scatterplots in Figure 1. The graphs show that the 



long-term trend line in each function is non-linear, the residuals and the 
biases are small at each point. These lead to the smoothing of “noisy” gross 
domestic products data in Nigeria during the period under review. 
 
Conclusion 
 

In this research work, we have attempted to look at the relationships 
between four major macroeconomic variables and the Nigeria gross domestic 
products between 2004 and 2014. The purpose is to determine the nature of 
the relationships and make predictions, which are comparable to 
conventional methods. The analysis shows that rise in federal government 
retained earnings which comprise federation account levies, company 
income tax, custom and excise duties, value added tax (VAT) pool, allocation 
from excess crude account and independent sources such as government 
ministries/departments/agencies (MDAs) surpluses and volatile crude oil 
prices remain the major variables causing instability in the growth of the 
country’s gross domestic products, which is in line with conclusions drawn 
by Lawal et al (2016). 
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