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Abstract

Marshall-Olkin G method of generalization is used to develop a new distribution named
Marshall-Olkin Inverse log-logistic distribution (MOILLD), which has a more tractable form
and can cope well with outliers in the upper tails. The statistical properties of the distribution,
such as survival function, hazard function, moments, and order statistic, were investigated. The
mean, variance, and mode of the distribution were also derived. The maximum likelihood esti-
mation method was used to estimates the parameters of the distribution. The result of real-life
data application showed that MOILLD has the least AIC, BIC, negative log-likelihood, and KS
values compared with its competing distributions. Hence, an excellent alternative to Inverse
log-logistic, Weibull, and log-normal distributions.

Keywords: Flexibility, Marshall-Olkin- G, Inverse log-logistic, Moments, Maximum likelihood
estimation.
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1 Introduction
Experts in probability distribution theory have made a frantic effort to ensure often, use of probabil-
ity distributions to their mathematical simplicity or flexibility. Efforts made by the researchers over
the past few years revealed that existing theoretical distributions are modified and extended [1].
The purpose of developing a probability distribution is to increase its flexibility and capability in
modeling actual-life data. One of the various methods embraced in developing distribution is the
generalized G families of distributions, which involves adding shape parameter(s) to the existing
distribution to make the new distribution more flexible and fit than the original distribution. The
objective of this paper is to generalize Inverse Log-logistic distribution using Marshall-Olkin G
transformation to obtain MOILLD.
Marshall and Olkin’s generalized family of distribution is a renowned method of adding a new pa-
rameter to an existing distribution [2]. The technique of applying Marshall-Olkin transformation
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has helped in the extensions of a family of distributions for added flexibility and is considered by
many researchers over the last few years. [3] presented Marshall-Olkin Half Logistic by extending
half logistic distribution to increase flexibility. [4] proposed the Marshall-Olkin Inverse Lomax distri-
bution by adding a new parameter to the inverse Lomax distribution. [6] introduced Marshall-Olkin
Gumbel-Lomax distribution and derived some characterizations of the distribution. [6] introduced
Marshall-Olkin Generalized Pareto Distribution, which can model non-monotonic failure rate func-
tions. [7] introduced Marshall-Olkin Right Truncated Fréchet-Inverted Weibull Distribution using
Marshall and Olkin transformation. This paper extends Inverse log-logistic distribution using the
Marshall-Olkin generalization method. The results are compared with the existing distributions.

2 Materials and Methods

2.1 Marshall-Olkin Inverse Log-logistic distribution (MOILLD)
Marshall-Olkin Inverse Log-logistic Distribution (MOILLD) is a two-parameter distribution derived
by generalizing Inverse Log-logistic Distribution using the Marshall-Olkin G family of distribution.
The probability density function (pdf) of the Inverse Log-logistic (ILL) distribution as defined by [8]
is giving by

f (x, γ) =
γ

xγ+1(1 + x−γ)
2 ;x > 0, γ > 0. (2.1)

its corresponding cumulative distribution function (cdf) is given by

F (x, γ) =
1

1 + x−γ
;x > 0, γ > 0. (2.2)

and the survival function is given by

F̄ (x, γ) =
x−γ

1 + x−γ
;x > 0, γ > 0. (2.3)

where γ is the shape parameter.
Let F̄ (x) denote the survival or reliability function of a continuous random variable X, then the

usual device of adding a new parameter results in another survival function Ḡ(x) defined by

Ḡ(x) =
αF̄ (x)

1− ᾱF̄ (x)
;x ∈ <, (2.4)

where α > 0 is the tilt parameter, ᾱ = 1− α and −∞ < x <∞.
If g(x) and r(x) are the probability density function and hazard rate function corresponding to
Ḡ(x), then

g(x) =
αf(x)

(1− ᾱF̄ (x))2
;x ∈ <, (2.5)

where α > 0, ᾱ = 1− α and −∞ < x <∞ and

r(x) =
h(x)

1− ᾱF̄ (x)
, (2.6)

where h(x) and f(x) are the hazard rate and pdf respectively corresponding to F̄ (x).
Marshall-Olkin Inverse Log-logistic Distribution (MOILLD) is derived by inserting (2.3) in (2.4) to
get the survival function and, substituting (2.1) and (2.3) in (2.5) to get the corresponding density
function.
The survival function of MOILLD is given by

Ḡ (x) =
x−γ

(1 + x−γ)− (1− α)x−γ
.
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Therefore,

Ḡ(x) =
αx−γ

1 + αx−γ
;x > 0, γ > 0, α > 0. (2.7)

The cumulative distribution function (cdf) is given by

G (x) = 1− Ḡ(x) = 1− αx−γ

1 + αx−γ

=
1

1 + αx−γ
;x > 0, γ > 0, α > 0. (2.8)

and the corresponding probability density function (pdf) of MOILLD is given by

g(x) =
αγ

xγ+1 (1 + αx−γ)
2 ;x > 0, γ > 0, α > 0. (2.9)

Figure 1 illustrates some of the possible shapes of the pdf plot of MOILLD for selected values of
the parameters α and γ. Figure 2.1 gives the pdf plot of MOILLD when α is constant and γ is
varied, figure 2.1 gives the pdf plot of MOILLD when α is varied and γ is constant and figure 2.1
gives the pdf plot of MOILLD when α and γ are varied. The figures show that the distribution of
the Marshall-Olkin inverse Log-logistic random variable X is positively skewed and it is unimodal.
The skewness tends to zero as the parameters increase simultaneously. It is a more suitable model
to obtain accurate probability values at the tails.
By using (2.9), the MOILLD can be expressed to have proper probability density function as follows:

∞∫
0

αγ

xγ+1(1 + αx−γ)2
dx

=

∞∫
0

αγ

xγ+1(1− cot2θ)2
.
−2cotθcosec2θxγ+1

αγ
dθ.

(we let cot2θ = −αx−γ)

=

π
2∫

0

sec2θtan2θdθ.

= 1.

Hence, the MOILLD is a proper distribution.

3 Statistical Properties of MOILLD

3.1 Moments of the MOILLD
Theorem 1: Let X be a random variable that has the MOILLD, then, the rth non-central moments
is given by

E(Xr) = α
r
γ
πr

γ
csc

(
π(γ − r)

γ

)
; r > 0, γ > 0, α > 0, (3.1)

where csc(.) is the cosecant function.

Proof:

E(Xr) =

∞∫
0

xrg(x)dx
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Alpha is constant

Gamma is constant

Parameters are varied

Figure 1: Probability Density Plots of MOILLD.

=

∞∫
0

xr
αγ

xγ+1(1 + αx−γ)2
dx

=

∞∫
0

αγ

xγ−r+1(1 + αx−γ)2
dx
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= αγ

∞∫
0

xr−γ−1(1 + αx−γ)−2dx.

Let y = 1 + αx−γ , then, dydx = −αγx−γ−1 and x =
(
y−1
α

)− 1
γ .

When x = 0, y =∞ and when x =∞, y = 1.
On substitution,

E(Xr) = αγ

1∫
∞

(
y − 1

α

)− 1
γ
r−γ−1

.y−2.
dy

−αγx−γ−1

= −
1∫
∞

(
y − 1

α

)− rγ
y−2dy. (3.2)

Using a property of definite integral, (3.2) becomes

E(Xr) = α
r
γ

∞∫
1

(y − 1)−
r
γ y−2dy

= α
r
γ

∞∫
1

(y − 1)−
r
γ

y2
dy

= α
r
γ

∞∫
1

(y − 1)(1−
r
γ )−1

y2
dy.

Using the Beta function integral over a half-line ( [11])

∞∫
1

(t− 1)p−1

t2
dt =

π(1− p)
sin(pπ)

.

Then,

E(Xr) = α
r
γ .
π
(

1−
(

1− r
γ

))
sin
(
π
(

1− r
γ

))
= α

r
γ

πr
γ

sin
(
π(γ−r)

γ

)
= α

r
γ
πr

γ
csc

(
π(γ − r)

γ

)
where csc(.) is the cosecant function.
This complete the proof.

The first two moments (r = 1 and r = 2) about the origin for MOILLD are given by

E(X) = α
1
γ
π

γ
csc

(
π(γ − 1)

γ

)
(3.3)

and
E(X2) = 2α

2
γ
π

γ
csc

(
π(γ − 2)

γ

)
. (3.4)
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Using (3.3) and (3.4), the variance of MOILLD is given by

V ar(X) = E(X2)− [E(X)]2

= 2α
2
γ
π

γ
csc

(
π(γ − 2)

γ

)
−
(
α

1
γ
π

γ
csc

(
π(γ − 1)

γ

))2

= α
2
γ
π

γ

(
2 csc

(
π(γ − 2)

γ

)
− π

γ
csc2

(
π(γ − 1)

γ

))
. (3.5)

3.2 Moment Generating Function of MOILLD
Theorem 2: Let X be a random variable that has the MOILLD, then the moment generating
function X at t is

Mx(t) =

∞∑
0

tm

m!
αm/γ

πm

γ
csc

(
π(γ −m)

γ

)
;m > 0, γ > 0, α > 0. (3.6)

where csc(.) is the cosecant function.

Proof: We have that the moment generating function is given by

Mx(t) = E(etx) =

∞∫
0

etxg(x)dx

=

∞∫
0

etx
αγ

xγ+1(1 + αx−γ)2
dx.

Using exponential series, we have

Mx(t) =

 ∞∫
0

∞∑
0

tmxm

m!

 αγ

xγ+1(1 + αx−γ)2
dx

=

∞∑
0

tm

m!
E(Xm)

=

∞∑
0

tm

m!
α
m
γ
πm

γ
csc

(
π(γ −m)

γ

)
.

To get the first moment, we differentiate Mx(t) with respect to t

M ′x(t) =
d

dt
(Mx(t)) =

∞∑
0

tm−1

m!
α
m
γ
πm2

γ
csc

(
π(γ −m)

γ

)

= α
1
γ
π

γ
csc

(
π(γ − 1)

γ

)
+ 2α

2
γ
πt

γ
csc

(
π(γ − 2)

γ

)
+ ....

E(x) = M ′x(t)|t=0

thus,

E(X) = M ′(0) = α
1
γ
π

γ
csc

(
π(γ − 1)

γ

)
. (3.7)
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To find the variance, we need to determine the second moment which is the second derivative of
Mx(t) with respect to t

M ′′x (t) =
d2

dt2
(Mx(t)) =

∞∑
0

(m− 1)tm−2

m!
α
m
γ
πm2

γ
csc

(
π(γ −m)

γ

)

= 0 + 2α
2
γ
π

γ
csc

(
π(γ − 2)

γ

)
+ 6α

3
γ
πt

γ
csc

(
π(γ − 3)

γ

)
+ . . . .

But
E(X2) = M ′′x (0),

thus,

E(X2) = M ′′x (0) = 2α
2
γ
π

γ
csc

(
π(γ − 2)

γ

)
.

The variance
V ar(X) = M ′′x (0)− [M ′x(0)]2

= 2α
2
γ
π

γ
csc

(
π(γ − 2)

γ

)
−
(
α

1
γ
π

γ
csc

(
π(γ − 1)

γ

))2

.

= α
2
γ
π

γ

(
2 csc

(
π(γ − 2)

γ

)
− π

γ
csc2

(
π(γ − 1)

γ

))
(3.8)

3.3 Order statistics
Let X(1), X(2), X(3), . . . , X(n) be the order statistics from the sample X1, X2, X3, . . . , Xn of size n
from a continuous population with cdf Fx(X) and pdf fx(X), then the pdf of rth order statistics
X(r) is given by

fx(r)
(x) =

n!

(r − 1)!(n− r)!
fx(x) [Fx(x)]

r−1
[1− Fx(x)]

n−r
; r = 1, 2, . . . , n. (3.9)

The pdf of the rth order statistic for a MOILLD is given by

fx(r)
(x) =

n!

(r − 1)!(n− r)!
αγ

xγ+1(1 + αx−γ)2

[
1

1 + αx−γ

]r−1 [
αx−γ

1 + αx−γ

]n−r
, (3.10)

for
r = 1, 2, . . . , n, γ > 0, α > 0.

Therefore, the pdf of the largest order statistic X(n) for a MOILLD is given by

fx(n)
(x) =

nαγ

xγ+1(1 + αx−γ)2

[
1

1 + αx−γ

]n−1
, (3.11)

and the pdf of the smallest order statistic X(1) for a MOILLD is given by

fx(1)
(x) =

nαγ

xγ+1(1 + αx−γ)2

[
αx−γ

1 + αx−γ

]n−1
, (3.12)

for
r = 1, 2, ..., n, γ > 0, α > 0.
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3.4 Quantile and Random Number Generation from MOILLD
The random numbers from a particular distribution are generated by solving the equation obtained
on equating the cdf of a distribution to a number q. Let q be a uniform variate on the interval
(0, 1), the procedure for the generation of random numbers from the MOILLD proceeds as:
Let

G(x) = q

from Equation (2.8);

G(x) =
1

1 + αx−γ
= q

i.e.
1

q
= 1 + αx−γ

αx−γ =
1

q
− 1

x−γ =
1

α

(
1

q
− 1

)

xq =

[
1

α

(
1

q
− 1

)]− 1
γ

(3.13)

If q = 0.25, q = 0.5 and q = 0.75, the resulting solutions will be the first quartile (Q1), Median
(Q2) and third quartile (Q3) respectively. Hence,

Q1 = x0.25 =

(
3

α

)− 1
γ

. (3.14)

Q2 = x0.5 =

(
1

α

)− 1
γ

. (3.15)

Q3 = x0.75 =

(
1

3α

)− 1
γ

. (3.16)

3.5 Mode of MOILLD
The mode of a distribution is given by solving the first derivative of its probability density function
for x. Consider the density of MOILLD given in (2.9) and solve ∂ ln g(x)

∂x = 0 for x, to obtain the
mode of Marshall-Olkin Inverse Log-logistic distribution as follows.
That is,

∂ ln g(x)

∂x
=
−α(γ + 3)x2γ − (γ + 1)x3γ +

(
(γ − 3)xγ + α(γ − 1)α2

)
x(xγ + α)3

Setting ∂ ln g(x)
∂x = 0, implies

−α(γ + 3)x2γ − (γ + 1)x3γ +
(
(γ − 3)xγ + α(γ − 1)α2

)
x(xγ + α)3

= 0 (3.17)

The maxima can be obtained by solving (3.17) to have

(mode = xmo) =

(
γ + 1

α(γ − 1)

)−1
γ

. (3.18)
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3.6 Maximum Likelihood Estimation of MOILLD
The parameters of the MOILLD using the method of Maximum Likelihood Estimation (MLE) are
estimated as follows;
Let X1, X2, X3, . . . , Xn be a random sample of size n from MOILLD, then the likelihood function
is given by

L(x|α, γ) =

n∏
i=1

αγ

xγ+1
i (1 + αx−γi )2

;x > 0, γ > 0, α > 0. (3.19)

By taking logarithm of the likelihood function, the log-likelihood function is given by

` = logL(x|α, γ) = nlog(αγ)− (γ + 1)

n∑
i=1

log(xi)− 2

n∑
i=1

log(1 + αxi
−γ). (3.20)

= nlog(αγ)− (γ + 1) (logx1 + logx2 + . . .+ logxn)

−2
(
log(1 + αx1

−γ) + log(1 + αx2
−γ) + . . .+ log(1 + αxn

−γ)
)
.

To obtain the MLE’s of α̂ and γ̂, differentiate the log-likelihood function with respect to α and γ.
Thus, we have

∂`

∂α
=
n

α
− 2

(
x1
−γ

1 + αx1−γ
+

x2
−γ

1 + αx2−γ
+ . . .+

xn
−γ

1 + αxn−γ

)
.

Therefore,
∂`

∂α
=
n

α
− 2

n∑
i=1

xi
−γ

1 + αxi−γ
. (3.21)

and

∂`

∂γ
=

n

γ
−

n∑
i=1

logxi + 2α

(
x1
−γ logx1

1 + αx1−γ
+
x2
−γ logx2

1 + αx2−γ
+ . . .+

xn
−γ logxn

1 + αxn−γ

)
.

Hence,
∂`

∂γ
=
n

γ
−

n∑
i=1

logxi + 2α

n∑
i=1

xi
−γ logxi

1 + α xi−γ
. (3.22)

To find the estimate of α and γ, we set (3.21) and (3.22) to zero. The two estimates were obtained
numerically by maximizing the log-likelihood function using the Newton’s method.
The Fisher Information is a way of measuring the amount of information that an observable random
variable X carries about an unknown parameter θ of a distribution that model X. The Fisher
information matrix is used to calculate the covariance matrices associated with maximum likelihood
estimates. The second partial derivatives which are useful to obtain the Fisher’s information matrix
can be computed as follows.

∂2`

∂α∂γ
=

∂2`

∂γ∂α
= −2

(
n∑
i=1

(
−αx

−γ
i ln(xi)

1 + αx−γi
+
α(x−γi )2 ln(xi)

(1 + αx−γi )2

))
. (3.23)

∂2`

∂α2
= − n

α2
− 2

(
n∑
i=1

(
− (x−γi )2

(1 + αx−γi )2

))
. (3.24)

∂2`

∂γ2
= − n

γ2
− 2

(
n∑
i=1

(
αx−γi ln(xi)

2

1 + αx−γi
+
α2(x−γi )2 ln(xi)

(1 + αx−γi )2

))
. (3.25)
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The Fisher’s information matrix can be computed using the approximation

Ix(α̂, γ̂) = −E

[
∂2`
∂α2

∂2`
∂α∂γ

∂2`
∂γ∂α

∂2`
∂γ2

]
, (3.26)

where α̂ and γ̂ are the MLEs of α and γ respectively. Using this approximation, we may con-
struct confidence intervals for the parameters of Marshall-Olkin inverse Log-logistic model. The
approximate 100(1− λ)% confidence intervals for α and γ are given by

α̂± Zλ
2

√
I−111 (α̂, γ̂) (3.27)

and
γ̂ ± Zλ

2

√
I−122 (α̂, γ̂) (3.28)

where Zλ
2
is the upper (λ2 )th percentile of the standard normal distribution. The Hessian matrix

and its inverse can easily be computed using R statistical software, and hence, find the values of
the standard error and asymptotic confidence intervals.

4 Results and Discussion

4.1 Simulation Study of MOILLD
This section compares the parameters for different sample sizes at different combination of param-
eters on the basis of bias and MSE of MOILLD. All the algorithms are coded in R language to
generate 10, 000 samples by using Monte Carlos simulation. ML estimates for α = 0.5, γ = 2.0 and
α = 0.5, γ = 3.0 are calculated based on generated samples. Mean of these estimates with bias and
MSE for sample sizes 50, 100 and 200 are presented in the table below.

Procedure for Simulation
The following describes the steps to simulate from MOILLD.

i. Generate a random sample of size r = 50 from MOILLD for parameters α = 0.5, γ = 2.0 and
α = 0.5, γ = 3.0 respectively.

ii. Use MLE method to find the estimate of α, α̂ and estimate of γ, γ̂ from the generated data.

iii. Repeat steps (i) and (ii) 1000 times.

iv. Find the mean of α̂i and γ̂i for i = 1, 2, 3, ..., 1000.

v. Calculate the bias of α and γ which is the average of deviation of α̂ and γ̂ from α and γ
respectively.

vi. Calculate the MSE of mean estimates which is the mean of square deviation of α̂ and γ̂ from
α and γ respectively.

vii. Repeat steps (i) to (vi) for r = 100 and r = 200 respectively.

The values in Table 1 indicate that the MSE of ML estimators of α and γ decreases and their biases
reduce towards zero as sample size increases. While the increase in shape parameters, increases
bias and MSE of estimated parameters. These are as usually expected under standard regularity
conditions. As the sample size n increases, the mean estimates of the parameters tend to be closer
to the true parameter values. This fact supports that the asymptotic normal distribution provides
an adequate approximation to the finite sample distribution of the estimates.
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Table 1: Estimates, bias and MSE of Estimated parameters of MOILLD.

α γ Sample size Parameter Mean Bias MSE
50 α 0.5071 0.0071 0.0181

γ 2.0530 0.0530 0.0642
100 α 0.5032 0.00316 0.00863

0.5 2.0 γ 2.0253 0.0253 0.0303
200 α 0.5012 0.00128 0.00427

γ 2.0130 0.0130 0.0147
50 α 0.5071 0.0071 0.0181

γ 3.0795 0.0795 0.1445
100 α 0.5032 0.0032 0.0086

0.5 3.0 γ 3.0380 0.0380 0.0682
200 α 0.5013 0.0013 0.0043

γ 3.0196 0.0196 0.0331

4.2 Application of MOILLD to Real Life Data Sets
In this section, the performance of the Marshall-Olkin Inverse Log-logistic distribution is compared
with Transmuted Inverse Log-logistic, Inverse Log-logistic, Weibull and log-normal distributions on
some lifetime data sets already in literature.

Data set I: Data set generated from MOILLD(4, 8.5). The data are:

1.3044, 1.9670, 3.7129, 1.8000, 4.7132, 1.7272, 3.2961, 1.5888, 1.6830, 1.5134, 2.8873, 1.1359,
1.6638, 2.6407, 2.6741, 2.2169, 1.4676, 2.0460,2.6426, 1.8805, 1.4641, 1.5745, 1.9251, 2.0862, 2.2469,
1.9276, 1.5185, 1.7478, 2.0789, 0.9225, 2.4588, 1.0785, 4.0290, 2.0026, 3.5017, 1.0499 1.8024, 1.6561,
2.6978, 1.9220, 0.9929, 3.8558, 1.5772, 1.6292, 1.8048, 1.2305, 1.5268, 1.2375, 2.2803, 2.0803, 1.2473,
1.1060, 3.2061, 0.5223 2.4182, 0.9931, 1.4543, 2.3761, 0.9166, 1.7527, 0.9193, 1.9618, 1.4970, 1.6260,
1.9136, 1.0575, 2.2904, 2.6740, 2.0319, 1.5696, 1.4826, 2.2582 1.9237, 1.8990, 1.5379, 2.1529, 2.9970,
1.9550, 1.7183, 1.9826, 1.4355, 1.0794, 1.9909, 1.6111, 1.7357, 2.8366, 1.6676, 1.1622, 0.9787, 1.3664
0.6126, 1.0664, 1.1801, 2.4157, 2.1894, 3.1645, 2.1623, 0.5218, 1.7035, 2.1128.

Data set II: The data set represents the survival times (in days) of seventy-two (72) guinea pigs
infected with virulent tubercle bacilli. It has been previously used by Shankeretal15. The data are:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60,
60, 60, 61, 62, 63, 65, 65, 67, 68, 70,70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109,
110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258, 263,297, 341, 341, 376.

Data set III: Data set which represents the relief times of twenty patients receiving an analgesic.
This data set was taken from Rodriguesetal15. The data are:

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1,1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0.

Table 2 gives the summary statistics such as minimum and maximum values, first, second and third
quartiles, skewness and kurtosis of the three set of data. The skewness coefficients show that the
three data sets were positively skewed.
The goodness-of-fit statistics, Akaike information criterion (AIC), Bayesian information criterion
(BIC), Log-likelihood (LL) and Kolmogrov-Smirnov (KS) statistic are computed to compare the
fitted models. The KS statistic compares the empirical cumulative distribution of the data to any
specified continuous distribution when its parameters are estimated by maximum likelihood. This
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Table 2: Summary of Real Life data sets.

Data set Min. Q_1 Median Mean Q_3 Max. Skewness Kurtosis
I 0.5218 1.4617 1.7763 1.8890 2.1963 4.7132 1.0407 1.5966
II 12.00 54.75 70.00 99.82 112.75 376.00 1.7590 2.4596
III 1.10 1.475 1.70 1.90 2.05 4.10 1.5924 2.3465

comparison of the two cdfs looks only at the point of maximum discrepancy of this statistic. The
lower the K-S values, the more evidence we have that the two cdfs are from the same distribution.

KS = Sup|Fn(x)− F0(x)| (4.1)

where Fn(x) is the empirical distribution function. Generic function calculating AIC and BIC for
the model having number of parameters p are respectively given by

AIC = 2p− 2LL (4.2)

and
BIC = p log(n)− 2LL (4.3)

The smaller the AIC, BIC and −LL the better the distribution. All computations are carried out
using the R-software (stat and fitdistrplus packages)
Table 3 presents the AIC, BIC, KS statistics and Negative log-likelihood values for fitted data set
1, II and III. The AIC, BIC, Negative Log-likelihood and KS Statistic values favour MOILLD in
comparison with two-parameter transmuted inverse log-logistic distribution, one parameter ILLD,
Weibull distribution and log-normal distribution. The result shows that the proposed model fit
better than the competing distributions.

Table 3: AIC,BIC, KS Statistic and Negative Log-likelihood values for fitted data set 1, II and III.

Data Fitness Measure ILLD TILLD MOILLD WEIBULL LOGNORM

I

AIC 331.13 333.13 215.65 225.94 225.94
BIC 333.74 338.35 220.86 231.15 223.55
-LL 164.57 164.57 105.82 110.97 107.17
KS 0.4741 0.4741 0.0535 0.0965 0.0854

II

AIC 1055.94 1057.94 783.93 798.30 784.67
BIC 1058.22 1062.50 788.48 802.85 789.22
-LL 526.97 526.97 389.96 397.15 390.34
KS 0.7210 0.7211 0.0866 0.1463 0.0956

III

AIC 67.60 69.60 36.95 45.17 37.54
BIC 68.60 71.60 38.94 47.16 39.53
-LL 32.80 32.80 16.48 20.59 16.78
KS 0.5617 0.5616 0.1108 0.1849 0.1519

Figures 2 displays the histogram and probability density function and empirical cumulative density
function (ecdf) plot of the competing distributions for the three data set to complement the results
of AIC, BIC, Negative Log-likelihood and KS Statistic values. Figure 4.2 presents histogram and
probability density function and Figure 4.2 presents ecdf plot for data I, Figure 4.2 presents his-
togram and probability density function and Figure 4.2 presents ecdf plot for data II while Figure
4.2 presents histogram and probability density function and Figure 4.2 presents ecdf plot for data
III. The probability distribution function of MOILLD fits the histogram of the data better than
the other distributions and the cumulative density function of the distribution fits the empirical
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distribution of the data better than that of other distributions. The plots show that MOILLD fits
the three data set best.

Histogram and probability density function for data I

ecdf plot for data I

Histogram and probability density function for data II

ecdf plot for data II
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Histogram and probability density function for data III

ecdf plot for data III

Figure 2: The Histogram and fitted pdf and ecdf plot of the competing distributions for data set I,
II and III.

5 Conclusion
The study proposed a new distribution named Marshal-Olkin Inverse Log-logistic distribution. The
pdf showed that the distribution is positively skewed and unimodal. Some of the statistical prop-
erties of the distribution were derived. The expressions for mean, mode, and variance were also
derived. The simulation result indicated that the MSE and estimates biases reduce towards zero
as the sample size increases. The result also revealed that an increase in shape parameters would
increase the bias and MSE of the estimated parameter. The AIC, BIC, KS statistics, and -LL
values of the fitted data sets showed that the new model consistently fit better than the competing
distributions. Hence, MOILLD is a better substitute for Inverse log-logistic, transmuted inverse
log-logistic, Weibull, and log-normal distributions in modeling skewed distributions.
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