EXPERIMENTAL ANALYSIS OF METAL MATRIX COMPOSITE REINFORCED WITH SUGARCANE BAGASSE ASH

Aderemi DADA¹ and Wahab AJIBOLA²
¹²Department of Mechanical Engineering
The Federal Polytechnic, Ilaro
Ogun State, Nigeria.

Abstract - The desire to provide a material of high quality and low weight has made metal matrix composite (MMC) undergo important consideration in recent years. Composite materials obtained by adding particles to the metals matrix have made remarkable progress in its development and application in aerospace and automotive industries. In this study, the micro structural and mechanical properties of zinc aluminum alumina reinforced with sugarcane bagasse ash were examined. Sugarcane bagasse ash is an agro waste generated from sugarcane. Solid sugarcane bagasse were poured and burnt on a steel plate in an open air for three hours. The ash obtained was condition in the furnace at temperature of 110°C for 180mins. Six samples were prepared with different composition. Alumina, and sugarcane bagasse were used as reinforced phase with zinc aluminum alloy at 100% Al and 0, 1, 1.5, 2, 2.5 wt.%. bagasse ash. The agro wastes and alumina were preheated before being introduced into the zinc aluminum composite in molten state. The mechanical properties such as tensile strength, hardness test and torsion were used to characterize the composite produced. The result shows an increase in hardness, tensile and shear strength in sample C (1.0wt%SCBA, 0.5wt% Al₂O₃) but gradually reduced in sample D(1.5wt%SCBA, 0.5wt% Al₂O₃), sample E (2.0wt%SCBA, 0.5wt% Al₂O₃) and sample F (2.5wt%SCBA, 0.5wt% Al₂O₃). A linear relationship was established between increase in sugarcane bagasse (SCBA) and decrease in hardness, tensile and torsion. Sample C (1.0wt%SCBA, 0.5wt% Al₂O₃) has the maximum value in hardness, tensile and torsion.

Keywords: Bagasse, Composite, Matrix, Reinforcement, Sugarcane, Hardness, Wear.

I. Introduction

Sugarcane bagasse is a waste produced after sugarcane juice has been extracted from sugarcane in the mills and it can be used for power generation. The ash produced in the process is known as bagasse ash that can be combined with other substances to form material with superior engineering material with improved mechanical properties. The use of alloy elements such as manganese, tungsten, nickel, chromium and vanadium to improve specific mechanical and micro-structural properties in some engineering materials through heat treatment usually culminate in costly materials, whereas cost and durability are the major considerations in engineering material selection. Therefore, this study examined micro-structural and mechanical properties of zinc aluminum reinforced with alumina and sugarcane bagasse ash with the intention of producing high quality and relatively cheap engineering material. The study will further facilitate the understanding of metal matrix composite reinforced with sugarcane bagasse and reveal an improved and effective means of disposing environmental waste such as sugarcane bagasse.
The advancement in material science has increased the application of metals with specific properties for use in engineering components. The introduction of ceramics reinforcement to metal matrix composite can improve strength, hardness, wear, and corrosion resistance [1]. Reinforcement materials for aluminum matrix composite such as rice husk ash, palm oil shell ash and ceramic material have been used with carbides, nitride and alumina to produce durable and economical engineering materials with high quality mechanical properties that has been used as bearing materials with excellent corrosion and wear resistance.

The word “composite” is widely used for material which consists of a distinct constituent (the reinforcement) disperse in an uncontrollable phase (the matrix), and which derives its unique characteristics from the properties of its components, the geometry and structure of the component, and the properties of the boundaries (interfaces). Precise effect of uniform dispersion of reinforcement in the matrix has been achieved with two step mixing method of stir casting technique and conducting experiment with various weight fraction of Al₂O₃ to achieve better homogeneity.[2]

Sugarcane bagasse (SCB) is a huge by-product of sugarcane obtained after the extraction of juice and it contains considerable amount of ashes. The ashes which constitute about 8-10% contain high amounts of un-burnt matter like silicon, aluminum, iron and calcium oxides. The ashes, obtained directly from the mill, are not reactive because they are burnt under uncontrolled condition at very high temperatures.

Zinc- aluminum matrix is a very good bearing material because of its low weight, excellent fluidity and wear resistance [3] Zinc- aluminum composite is a superb material that is becoming increasingly popular in many engineering applications, especially in automobiles and aerospace industries. It is glaring from recent development that metal matrix composite may replace traditional materials in many commercial and industrial applications in the near future. Aluminum and its alloys have been used, as a matrix for variety of reinforcement; as a result advanced metal matrix composites with improved properties have been obtained. The combination of light weight, corrosion resistance and favorable mechanical properties has made aluminum alloy very popular for use as metal composite.

Aluminum based alloy matrix has been successfully utilized in the development of high performance components in defense, marine and other industrial applications because of the broad range of excellent physical and mechanical properties, and good finishing characteristic. [2]. In metal matrix composite the continuous or matrix phase is a monolithic alloy and the reinforcement consist of materials with high strength, good density, good thermal resistance, which in reality can be in form of fibers or particulate. Fibers and particles are used in MMCs to increase strength and thermal conductivity, reduce weight, friction and wear under heavy load The use of particulate reinforcements such as silicon carbide (SiC), which is not produced in most developing countries has a disadvantage of extra cost and high weight.

Furthermore, the fabrication of discontinuous Zn-Al based MMCs can be achieved by standard metal processing technologies such as powder metallurgy, direct casting, rolling, forging, and extrusion and the products can be machined using conventional manufacturing processes. The addition of graphite particles to Zn-Al alloy improves wear behavior in metal matrix composites; hence zinc-aluminum alloys have found wide industrial application. The members of ZA alloys are ZA-8, ZA-12 and ZA-27 alloys. These alloys have effectively competed with copper, aluminum and other foundry based alloy in engineering application [4]. However, at elevated temperature, the mechanical and physical properties of zinc aluminum alloys are unsatisfactory. Modern engineering applications require materials that have great energy to weight ratio that can be used where high performance is required. The combination of
metallic properties of matrix alloys (ductility and toughness) with ceramic reinforcement (high strength and high modulus) offers greater strength that distinguishes it as the most commonly used metallic alloy for metal matrix material[1].

II. Methodology

A The Sugarcane Bagasse and Metal Matrix Composite

Sugarcane bagasse is a waste product generated in agricultural industry and it is readily available in Nigeria. After the consumption of sugarcane people simply discard the bagasse as waste due to its little economic value. It is a fibrous residue of cane stalks produced after crushing and extraction of juice from the sugarcane. Bagasse is usually grey-yellow to pale green color. It is cumbersome and quite irregular in particle size. The sugarcane residue is a poorly utilized, renewable agricultural material that encompasses two unique cellular compositions. The first is a thick walled, lengthy, fibrous fraction derived from the skin and fibrous-vascular bundles dispersed all through the internal portion of the stalk. The second is a pith fraction derived from the thin walled cell from the ground tissue. The primary chemical compositions of bagasse are cellulose, hemicellulose and lignin. Hemicellulose and cellulose are present in the form of hollow cellulose in bagasse which contributes approximately 70% of the overall chemical constituents found in bagasse is lignin which serves as an energy conservation system [5].

B Preparation and Production of the Agro-Waste Material

Pure zinc ingot and aluminum 6011 alloy were used in the production of zinc-aluminum (Zn-Al) alloy matrix. Chemically pure aluminates particles (Al₂O₃) having average particle size (5micron) and agro waste material which is the sugar cane bagasse ash (SCBA) derived from controlled burning and sieving of dry sugarcane were employed. The sugarcane bagasse ash was used as reinforcement for the Zn-Al based composite. Tests sample with varying composition of this reinforcement were produced. The agro waste, sugarcane bagasse (SCB) was burnt in an open air (uncontrolled combustion) for three hours to produce sugarcane the bagasse ash (SCBA).

The chemical composition of the aluminum used is presented in the tables below.

<table>
<thead>
<tr>
<th>ELEMENTS</th>
<th>WEIGHT PERCENTAGE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>0.745</td>
</tr>
<tr>
<td>Si</td>
<td>0.483</td>
</tr>
<tr>
<td>Mn</td>
<td>0.122</td>
</tr>
<tr>
<td>Cu</td>
<td>0.122</td>
</tr>
<tr>
<td>Zn</td>
<td>0.272</td>
</tr>
<tr>
<td>Ti</td>
<td>0.010</td>
</tr>
<tr>
<td>Mg</td>
<td>0.347</td>
</tr>
<tr>
<td>Pb</td>
<td>0.180</td>
</tr>
<tr>
<td>Sn</td>
<td>0.003</td>
</tr>
<tr>
<td>Al</td>
<td>97.88</td>
</tr>
</tbody>
</table>

The agro waste materials (sugarcane bagasse) were obtained from a nearby local market at Papalanto in Ogun State in Nigeria. The already dried solid bagasse were poured on a steel plate outside an
open air and set on fire with the use of a match stick and gas fuel. It burned vigorously for two hours after which it was allowed to burn in open air for about three hours. The volume reduced drastically during burning, the remains were gathered into a crucible and left to continue burning for a whole day. The ash obtained in the drum was allowed to cool in the steel plate before removal. The ash obtained was then conditioned in a furnace at temperature of 110°C for 180 minutes to reduce the volatile constituents of the ash.

C Preparation of the Mould
Cylindrical wooden patterns (single piece) were selected with molding box, the mould was then prepared. This started with collapsing of the previously made mould with the use of a shovel and hammer, the molding sand was conditioned with water and mixed, and the sieving of the facing sand inside the head pan was effected. The drag was prepared, facing coming first, followed by ramming. Parting line was created along the side of the patterns to facilitate allowance for easy removal and parting sand was applied on the face of the drag. The cope was then prepared creating cavity in it with spruce pins.

D Production of the Metal Matrix Composite
Two step stir casting process was used for production of the composite material; this was adopted to allow homogeneity and even distribution of particles. The Al₂O₃ particles were pre-heated to a temperature of about 250°C for 2 hours and then sieved to obtain fine ash grain size (about 150μm) and to remove impurities. The aluminum was fired in the furnace and heated to a temperature of about 670°C till it melts completely. Zinc was then charged into the furnace and allowed to melt completely. The melt was returned to the furnace after stirring and heated for 7 minutes. The pre-heated Al₂O₃ particles were charge into the furnace, followed by the sugarcane bagasse ash particles. A gas fired crucible furnace was used for the operation. The slurry was cast into the moulds and the process was repeated for the rest of the samples.

Table 2.2: Composition of the SCBA.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>ZINC %</th>
<th>ALUMINIUM %</th>
<th>AL₂O₃ %</th>
<th>SCBA%</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>73</td>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>71.5</td>
<td>27</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>D</td>
<td>71</td>
<td>27</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>E</td>
<td>70.5</td>
<td>27</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>F</td>
<td>70</td>
<td>27</td>
<td>0.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Table 2.3: Charge Calculation

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>ZINC(g)</th>
<th>ALUMINIUM(g)</th>
<th>AL₂O₃(g)</th>
<th>SCBA(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>848.34</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1356.01</td>
<td>501.54</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1312.88</td>
<td>495.774</td>
<td>9.181</td>
<td>18.362</td>
</tr>
<tr>
<td>D</td>
<td>1297.98</td>
<td>493.60</td>
<td>9.14</td>
<td>27.422</td>
</tr>
<tr>
<td>E</td>
<td>1300.18</td>
<td>494.44</td>
<td>9.156</td>
<td>36.625</td>
</tr>
<tr>
<td>F</td>
<td>1268.61</td>
<td>489.321</td>
<td>9.06</td>
<td>45.3075</td>
</tr>
</tbody>
</table>

III. Experimental Analysis and Test

A Experimental Analysis

Density of Aluminium = 2.7 g/cm³
Density of Zinc = 7.1 g/cm³
of sugarcane Ash
= 1.98 g/cm³
Density of Aluminate = 3.75 g/cm³

\[
\text{Density} = \frac{\text{Mass}}{\text{Volume}}
\]

The volume of specimen (cylindrical in shape)

\[
V = \pi r^2 l \quad (\text{Volume of a cylinder})
\]

D= 2.0cm, L= 20cm

\[
V = \pi \times 1.0^2 \times 20
\]

\[
V = 62.84 \text{cm}^3
\]

Sample A

\[
\delta Al \times w\% Al
\]

\[
2.7 \times 100\% Al
\]

\[
2.7 \times 2.7
\]
Mass/volume = 2.7 g/cm³

Mass = 62.84 × 2.7

Mass = 169.668g

Mass ratio/percentage

Aluminium (Al)

Mass (Al) = 1 × 169.668

Mass (Al) = 169.668g

For two patterns

Mass (Al) = 169.668 × 5

Mass (Al) = 848.34g

Sample B

\[\delta Al \times w\% Al + \delta Zn \times w\% Zn \]

2.7 × 27% Al + 7.1 × 73% Zn

2.7 × 0.27 + 7.1 × 0.73

0.729 + 5.183

Mass/volume = 5.912 g/cm³

Mass = 62.84 × 5.912

Mass = 371.51g

Mass ratio/percentage

Aluminium (Al)

Mass (Al) = 0.27 × 371.51

Mass (Al) = 100.307g

For two patterns
Mass (AL) = 100.307 × 5

Mass (AL) = 501.54g

Zinc (Zn)

Mass (Zn) = 0.73 × 371.51

Mass (Zn) = 271.20g

For two patterns

Mass (Zn) = 271.20 × 5

Mass (Zn) = 1356.01g

Sample C

(0.5% Al₂O₃, 1.0% SCBA)

\[\delta Al \times w\% Al + \delta Zn \times w\% Zn + \delta Al2O3 \times w\% Al2O3 + \delta SCBA \times w\% SCBA \]

\[2.7 \times 0.27 + 7.1 \times 0.715 + 3.75 \times 0.005 + 1.98 \times 0.01 \]

\[0.729 + 5.0765 + 0.01875 + 0.0198 \]

5.844 g/cm³

Mass/volume = 5.844 g/cm³

Mass = 62.84 × 5.844

Mass = 367.24g

Mass ratio/percentage

Aluminium (Al)

Mass (AL) = 0.27 × 367.24

Mass (AL) = 99.15g

For two patterns

Mass (AL) = 99.15 × 5
Mass (Al) = 495.774 g

Zinc (Zn)

Mass (Zn) = 0.715 × 367.24

Mass (Zn) = 262.58

For two patterns

Mass (Zn) = 262.58 × 5

Mass (Zn) = 1312.88 g

Aluminate (Al$_2$O$_3$)

Mass (Al$_2$O$_3$) = 0.005 × 367.24

Mass (Al$_2$O$_3$) = 1.836 g

For two patterns

Mass (Al$_2$O$_3$) = 1.836 × 5

Mass (Al$_2$O$_3$) = 9.181 g

Sugarcane bagasse ash (SCBA)

Mass (SCBA) = 0.01 × 367.24

Mass (SCBA) = 3.6724 g

For two patterns

Mass (SCBA) = 3.6724 × 5

Mass (SCBA) = 18.362 g

Sample D

(8% Al$_2$O$_3$ 2%SCBA)

δAl × w%Al + δZn × w%Zn + δAl2O3 × w%Al2O3 + δSCBA × w%SCBA

2.7 × 0.27 + 7.1 × 0.71 + 3.75 × 0.005 + 1.98 × 0.015
0.729 + 5.041 + 0.01875 + 0.0297

Mass/volume = 5.8185 g/cm³

Mass = 62.84 × 5.8185

Mass = 365.63 g

Mass ratio/percentage

Aluminium (Al)

\[\text{Mass (AL)} = 0.27 \times 365.63\]

\[\text{Mass (AL)} = 98.72 g\]

For two patterns

\[\text{Mass (AL)} = 98.72 \times 5\]

\[\text{Mass (AL)} = 493.60 g\]

Zinc (Zn)

\[\text{Mass (Zn)} = 0.71 \times 365.63\]

\[\text{Mass (Zn)} = 259.59 g\]

For four patterns

\[\text{Mass (Zn)} = 259.59 \times 5\]

\[\text{Mass (Zn)} = 1297.98 g\]

Aluminate

\[\text{Mass} (Al_2O_3) = 0.005 \times 365.63\]

\[\text{Mass} (Al_2O_3) = 1.828 g\]

For two patterns

\[\text{Mass} (Al_2O_3) = 1.828 \times 5\]

\[\text{Mass} (Al_2O_3) = 9.14 g\]
Sugarcane bagasse Ash

\[\text{Mass (SCBA)} = 0.015 \times 365.63 \]

\[\text{Mass (SCBA)} = 5.485g \]

For two patterns

\[\text{Mass (SCBA)} = 5.485 \times 5 \]

\[\text{Mass (SCBA)} = 27.422g \]

Sample E

(0.5% \(Al_2O_3 \), 2.0% SCBA)

\[\delta Al \times w\% Al + \delta Zn \times w\% Zn + \delta Al_2O_3 \times w\% Al_2O_3 + \delta SCBA \times w\% SCBA \]

\[2.7 \times 0.27 + 7.1 \times 0.71 + 3.75 \times 0.005 + 1.98 \times 0.02 \]

\[0.729 + 5.041 + 0.01875 + 0.0396 \]

\[5.828g/cm^3 \]

\[\text{Mass/volume} = 5.828g/cm^3 \]

\[\text{Mass} = 5.828 \times 62.84 \]

\[\text{Mass} = 366.25g \]

Mass ratio/percentage

Aluminum (Al)

\[\text{Mass (AL)} = 0.27 \times 366.25 \]

\[\text{Mass (AL)} = 98.88g \]

For two patterns

\[\text{Mass (AL)} = 98.88 \times 5 \]

\[\text{Mass (AL)} = 494.44g \]

Zinc (Zn)
Mass (Zn) = 0.71 × 366.25
Mass (Zn) = 260.04g

For two patterns
Mass (Zn) = 260.04 × 5
Mass (Zn) = 1300.18g

Aluminate (Al₂O₃)
Mass (Al₂O₃) = 0.005 × 366.25
Mass (Al₂O₃) = 1.83g

For two patterns
Mass (Al₂O₃) = 1.83 × 5
Mass (Al₂O₃) = 9.156g

Sugarcane Bagasse Ash
Mass (SCBA) = 0.02 × 366.25
Mass (SCBA) = 7.325g

For two patterns
Mass (SCBA) = 7.325 × 5
Mass (SCBA) = 36.625g

Sample F
(0.5% Al₂O₃, 2.5% SCBA)
\[\delta Al \times w\% Al + \delta Zn \times w\% Zn + \delta Al₂O₃ \times w\% Al₂O₃ + \delta SCBA \times w\% SCBA \]
2.7 × 0.27 + 7.1 × 0.70 + 3.75 × 0.005 + 1.98 × 0.025
0.729 + 4.97 + 0.1875 + 0.0498
5.767 g/cm³
\[\text{Mass/volume} = 5.767 \text{g/cm}^3 \]
\[\text{Mass} = 62.84 \times 5.767 \]
\[\text{Mass} = 362.46 \text{g} \]

Mass ratio/percentage

Aluminium (Al)
\[\text{Mass (AL)} = 0.27 \times 362.46 \]
\[\text{Mass (AL)} = 97.86 \text{g} \]

For two patterns
\[\text{Mass (AL)} = 97.86 \times 5 \]
\[\text{Mass (AL)} = 489.321 \text{g} \]

Zinc (Zn)
\[\text{Mass (Zn)} = 0.70 \times 362.46 \]
\[\text{Mass (Zn)} = 253.722 \text{g} \]

For two patterns
\[\text{Mass (Zn)} = 253.722 \times 5 \]
\[\text{Mass (Zn)} = 1268.61 \text{g} \]

Aluminate (Al}_2\text{O}_3\)
\[\text{Mass (Al}_2\text{O}_3\) = 0.005 \times 362.46 \]
\[\text{Mass (Al}_2\text{O}_3\) = 1.8123 \text{g} \]

For two patterns
\[\text{Mass (Al}_2\text{O}_3\) = 1.8123 \times 5 \]
\[\text{Mass (Al}_2\text{O}_3\) = 9.06 \text{g} \]

Sugarcane bagasse Ash (SCBA)
\[\text{Mass (SCBA)} = 0.025 \times 362.46 \]

![Fig. 3.1 Micro structural Specimen](image-url)
Mass \((SCBA) = 9.0015g\)

For two patterns

Mass \((SCBA) = 9.0015 \times 5\)

Mass \((SCBA) = 45.3075g\)

B Experimental Tests

This is the primary stage involved in metallographic examination processes. The processes include grinding, polishing, and etching before final examination under the metallurgical microscope. The specimen size is 10mm x 30mm x 20mm. The microstructure of the specimen is typical of sample E.

IV. Result and Discussion

The result of the hardness test is depicted in table 4.1. The Brinell hardness number (BHN) value reads maximum at sample C containing 0.5wt%\(Al_2O_3\)1.0wt% SCBA. It was observed that an increase in hardness was as a result of increase in \(Al_2O_3\) particle and this is in conformity with the expected result. (Pruthviraj, 2011). However, the ductility of the composite material decreases with addition of SCBA at 1.5wt% SCBA 0.5wt%\(Al_2O_3\) (sample D) the Zn-Al composite material showed rapid decline in hardness, and continue to decrease due to addition of SCBA. The reinforced composite materials exhibited better hardness values than the Zn-27 alloy material.

Figure 4.1: Microstructural Specimen (Sample A)

Figure 4.2: Microstructural Specimen (Sample B)

In figure 4.3, the micrograph of sample C shows a highly dispersed \(Al_2O_3\) (alumina) and SCBA in the matrix which give rise to the hardness effect on sample C, unlike sample D which has 1.5wt%, therefore causes reduction in the hardness.

Figure 4.3: Microstructural Specimen (Sample C)

Figure 4.4: Microstructural Specimen (Sample D)
In figure 4.5 Sample E with 2.0wt % SCBA and 0.5wt% Al₂O₃ shows rapid decline in hardness because of increase in volume of SCBA presence in the matrix composite which is not uniformly dispersed which give rise to sharp reduction in hardness and shear stress. Sample F shows reduction in hardness due to heavy presence of SCBA (2.5%wt) with 0.5wt% Al₂O₃. The micrograph shows heavy presence of SCBA which is responsible for decline is hardness and tensile and shear strength.

Table 4.1 Hardness value of A-F composite samples.

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE</td>
<td>19.9</td>
<td>21.6</td>
<td>59.8</td>
<td>54.2</td>
<td>50.9</td>
<td>38.5</td>
</tr>
</tbody>
</table>

Fig 4.7 Graph of Hardness Values

Fig. 4.8 Bar Chart of Hardness Values

Table 4.2: Tensile value of A-F composite samples.

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUE (Nmm²)</td>
<td>67.6</td>
<td>73.4</td>
<td>203.2</td>
<td>184.2</td>
<td>172.9</td>
<td>130.8</td>
</tr>
</tbody>
</table>
V. Conclusion

The mechanical properties of Zinc Aluminum alloy metal matrix composite containing Alumina and Sugarcane Bagasse ash (SCBA) containing 0, 1, 1.5, 2, 2.5wt% SCBA as reinforcement was investigated. The results shows that the hardness of the hybrid composites was observed to be superior compared to that of the Zn-27 alloy. The results of the hardness and tensile tests follow a linear pattern. SCBA particle has serious effect on the hardness of the composite material, The SCBA has a great...
promise as a reinforcement material that can greatly reduce cost and produce high performance material with better mechanical properties.

References

Appendix

Sugarcane bagasse

Gas furnace