e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

Bird Species and Flora Diversity, Conservation Strategies of a Degraded Amahor Forest Reserve Igueben Edo state Southwestern Nigeria

Okosodo E. F.

Department of Leisure and Tourism, Federal Polytechnic Ilaro, Ogun State Nigeria

Sarada P. M

Department of Botany N.C Autonomous College Jajpur India

Okosodo G. F.

Department of Agro forestry, Leventis Foundation Nigeria, Agricultural Training School IlesaOsun state Nigeria

Abstract: 0sterculiaceae has the highest tree species 14 followed by Euphorbaceae 13 tree species.

Key words: Avifauna and flora, diversity habitat fragmentation agricultural intensification, ecological survey and conservation strategies.

INTRODUCTION

The lowland rain forest is a crucial ecological significance area within the tropical region, which is a serious link between natural resources management and agricultural practices (Okosodo, et al, 2016). It's a storehouse or hotspot for the conservation of important species that rural inhabitants mostly depended upon as a source of protein and at an equivalent time serving the deep interest of the conservationists for cove.Logging inevitably results in changes in biodiversity, ideally, these changes should be recognized and accepted before logging commences (Isikhuemen, et al, 2020). Trade-offs between costs and profit on one hand and biodiversity gains and loss on the opposite should be recognized explicitly and therefore the selection of other strategies and scenarios negotiated between stakeholders (Leslie, et al2002). The key threats to bird species revolve round the adoption of intensive agricultural management practices (Wilson et al. 2005). Changes in farm practices frequently identified as drivers of avian declines include increased field and landscape homogeneity, shorter crop rotations, loss of semi-natural or non-crop habitat, chemical use, a switch from wet to dry sowing, land drainage, a switch from hay to silage along side earlier harvesting, and therefore the decline within the availability of habitat quality at the sting of ranges (Wilson et al. 2009, Butler et al. 2010). within the future, demands for biofuel crops (Eggers et al. 2009), along side modernization, specialization, and land abandonment (Wilson et al. 2010) are considered to be ongoing drivers of change across Nigeria. Amahor forest reserve is degraded over a period of your timeand these key threats to the bird species are prevalent, thus there's a requirement to hold out this research study to record the bird species and plant species status within the study area. Thus, this research study seeks to explore the differences in bird species diversity in a logged forest within the protected habitat of Amahor Forest Reserve, Edo State

MATERIALS AND METHODS

Study Area

Amahor Forest Reserve (AFR) is found between Latitude 6° 45′ & 6° 48′N and Longitude 6° 12′ & 6° 14′E (Figure 1). it's situated on the southern fringe of Amahor town in the Igueben Local Government Area of Edo State. Covering a neighborhood of 15.31 km2, AFR is bound on the north by expansive rubber plantation regrowth fallow vegetation with Amahor waterside (village) at the far end. Within the northwest is that the confluence of Ebah stream and Ossiomo River; and has Ehor Forest Reserve to the west while the union of Agbokoi and Ossiomo Rivers forms a V-shape at the southern boundary. The topography consists of a medley of plateaus and valleys crisscrossed by streams and rivulets. The soil is poorly drained with occasional or partially weathered rock fragments (regolith) which are grave, mottled, or tainted grey to dark brown. Annual rainfall varies between 1600 and 4000 ml, mean annual temperature is 30 °C and therefore the ratio isn't below 40 that in season and 100% during the wet season (Mengistu, and Salami, (2007). The study site experiences a bimodal annual rainfall pattern, between April and July and from September to October, separated by season (Isichei, 1995). Vegetation is predominantly rainforest, including wetlands along the rivers and Panicum maximum dominated open land. Among the common trees are Celtiszenkerii,

e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

Triplochitonscleroxylon, Antiarisafricana, Pycnanthusangolensis and Antiarisafricana, Pycnanthusangolensis and Alstoniaboonei (Keay 1989). Other non-timber forest products: fuel wood, chewing sticks, medicinal plants, construction and weaving materials, vegetables, and other food materials are exploited from the reserve.

Figure 1, Map of the study area (Source Isikhuemen, et al, 2020)

Data Collection

The study area was divided into three compartments for the purpose of this study. Undisturbed forest, secondary forest, and, wetland area. Line transects method (Sutherland, 2009) was used to collect data on bird species diversity in the study area. 10 transect lines were randomly placed in each compartment and in all a total of 30 transect lines were used for this study. Transect lines were walked three times a week for three months in both seasons (May, July and September for wet season and November, January, and March for dry season) of the year.Survey was conducted between 0.600hours and 10.00hours and 1600 hours to 1800 hours. All birds viewed on the ground or in the vegetation, as well as birds that are flying ahead, were identified and the number in the group recorded. Birds of the same species within 10m of each other were counted in the same group. A pair of binoculars with a magnification 7x 50 was used in the identification of bird species. Distance estimates were obtained by using a digital range finder. Physical features of birds sighted but could not be identified immediately were taken and field guide book of West African birds (Burrow and Demey, 2011) was used to identify the bird species and bird calls was used to confirmed the presence of nocturnal bird species within the study sites Okosodo et al, 2016

Habitat survey

The ecological survey for the floristic study was conducted in March 2020 (Ogunjemite and Oates 2011). . In this study, a total of 15 study plots of about 25 m \times 25m Quadrants (500 sq m) size were established. All woody plants with stems rooted independently within a plot and with a DBH (measured at 1.3 m above ground for all life forms) equal to or greater than 2.5 cm were measured, inventoried and identified to species level. Multiple stems were measured separately, but all stems rooting in the same place were counted as one individual. Specimens were collected in April and May 2020. All specimens were sorted to species level and identified by matching them with vouchers identified by specialists or professional botanists. DBH measurement was taken with simple tape measure while height of trees was taken using HagaAltimetre.

Data analysis

Data obtained from the field survey were entered excel (version 15) spread sheet prior to both descriptive (tables, frequency and percentage frequency, graph, pie and bar charts) and analytical statistics Past Model was used to analyzed bird species diversity, SHE analysis floristic composition and. relationship between bird species diversity habitat variables

e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

RESULTS

A total of 156 bird species belonging 36 families and 18 orders were recorded in the study area, which indicates area the support bird species diversity. One hundred and (125) bird species were recorded in the secondary forest compartment, Wetland compartment(16) bird species and undisturbed forest compartment (6) bird species Figure 2. Family composition showed that the Pycnonotidae has the highest bird species in the study area which is followed by the family Estrildidae Figure 3. One endemic bird species *Malimbusibadanesis* and one rare species of weaver *ploceus tricolor* were encountered during the field survey. TheShannon_Hdiversity index was higher during dry season (5.011) than wet season (4.976), which indicates influx of migrants bird species to the study area Table 1. The highest occurring tree species are *FicusEsasperata*, and *Ceibapentandra* with 36 and 19 tree species respectively. DBH of 466cm was recorded in *FicusEsasperata*followed *FicusLatifolia* 456 cm in the study area. Also the highest mean height of 41m was recorded in Milliciaexcelsa and the highest occurrence of tree species was recorded in Brachystegiaeurycoma 39.Shannon_H diversity was 4.849 in the study area. The result of the family composition indicates that sterculiaceae has the highest tree species 14 followed by Euphorbaceae 13 tree species.

| e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

Diversity Index	Dry Season	Lower	Upper	Wet Season	Lower	Upper
Taxa_S	156	152	155	147	132	145
Individuals	402	402	402	280	280	280
Dominance_D	0.006881	0.008119	0.009109	0.006964	0.008801	0.01026
Shannon_H	5.011	4.855	4.917	4.976	4.731	4.845
Evenness_e^H/S	0.9684	0.834	0.8835	0.986	0.8399	0.8875
Brillouin	4.476	4.348	4.399	4.319	4.144	4.219
Menhinick	7.731	7.581	7.731	8.785	7.889	8.665
Margalef	25.68	25.18	25.68	25.91	23.25	25.56
Equitability J	0.9936	0.964	0.9754	0.9972	0.9646	0.9758

Table 1, Diversity index of bird species in the study area

Figure 5. Densities of bird species against habitat variable in the study area

e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

DISCUSSION

The modification in the habitat by human activities affected the bird species diversity recorded in the study area. One hundred and twenty five (125) bird species enumerated in the study area were secondary forest and fallow land bird species. This finding is consistent with (Isikhuemen, et al, 2020) who reported low diversity due massive logging, poaching and faming in the same Amahorforest reserve. The result of the family composition in the study area indicate that Pycnonotidae has 13 bird species which was followed by Estrildidae has 12. These families which bird species utilized secondary forest and fallow land. This suggests that the anthropogenic activities took place in the area this is consistent with who reported that in the absence of good forest management planning, illegal and/or uncontrolled logging leads to the loss or destruction of forests; and the concomitant habitat and biodiversity losses threaten the survival of important flora and fauna species (FAO and UNEP, 2020). One endemic species Malimbusibadanensis and rare species of weaver Ploceus tricolor were recorded in the study area, the watershed This result agrees from many studies conducted in various forest ecosystems around the world, for example boreal pine in Canada (Venier and Pearce, 2005), Mediterranean oak and pine in Spain (Gil-Tena et al., 2007) and eucalypt in Tasmania (Hingston and Grove, 2010). This also agrees with (Sustainable Ecosystems Institute (20017) who reported that serious loss of the biodiversity value occurs in the transformation of original landscapes to croplands due to human interference. The diversity index showed that it was higher in the dry season (5.011) than wet season (4.976). This is probably due to migratory birds species that utilized the wetland area during the dry season. Example of such of migratory bird species are Common Redshank, Common Sandpiper, Common Greenshank, Collared, Pratincole, Grey Pratincole Pied Flycatcher, and African Grey Hornbill. As a result of the disturbance taking place in the study area these bird species are threatened. This agrees with (Wilcove and Wikelski 2008) who reported that worldwide migratory birds have suffered population declines and range constriction due to increase in anthropogenic pressures. Growing evidence links this to agricultural expansion (Inouye et al. 2000, Murphy 2003). The SHE analysis was used to examines the relationship between richness and the Shannon-Wiener diversity index) and (evenness as measured using the Shannon-Wiener evenness. The result indicates that was positive relationship between the species richness and species evenness in the study area Figure3, The density of bird species and habitat variables was positive, majority of bird species encountered as core forest bird species have move out of the study area.

The result of the ecological survey carried out showed the most econ3mic trees have been cut down. This resulted the to the study area becoming a secondary forest which has low DBH, Low mean height and most trees left unlogged are fruit trees, example are FicusEsasperata, FicusglumosaFicusglumosa, FicusthoniigiiFicussur, which affected bird species in the study area. Most forest bird species that utilized forest ecosystem have move away from the area, bird species such as Black Casqued Hornbill, Black and White Casqued Hornbill, Great Blue Turaco, Crested Guinea fowl Frasser Owl were not sighted in the study area. This observation agrees with Usher (2009) reported that diversity is the most frequent adopted criteion for evaluation of conservation schemes and that diversity indicies correlated with stability of the ecosystem and will be high in biologically protected areas. Deforestation such as logging, firewood collection, charcoal making cutting of raffia palm, cutting coco nut, agriculture (bush burning, use of herbicides and destruction of out- growth shrubs) and soil excavation are major activities that caused major changes in the ecosystem. This finding is consistent(Ajonina, and Usongo, (2001)with for, agriculture, farming, drainage destruction of wetlands, human settlement, the building of infrastructures and industries among others have altered lots of habitats Myers (2002) reported that the loss of tropical ecosystem is of particular concern because the biome contains over half of the world species. Many studies have examined the impact of habitat loss and fragmentation due to agriculture on tropical bird communities (Okosodo, et al, 2019).

CONCLUSION AND RECONMENDATION

The presence of some endangered and threatened bird species in the study area is a sign of hope. However, their conservation must be guaranteed and that will only be achieved by the conservation of extensive areas of natural vegetation.

The conservation strategy must integrate the physical, economic, social and cultural condition of the farmers and Local people so as to come up with innovations and technologies that conserve and sustain biodiversity. The research strategy must integrate the physical, economic, social and cultural condition of the farmers so as to come up with innovations and technologies that conserve and sustain biodiversity.

To maintain the avifauna diversity of the area, land use planning that both protects the native tree species and emphasizes on bird-friendly landscape design may enhance avian and tree species diversity within the area.

Strict law enforcement on farming practices that will have negative effects on avifauna in the study area should be discouraged community education and promotion of alternative income-generating activities should be encouraged and community education and promotion of alternative income-generating activities should be encouraged.

e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

All forms of exploitation or logging activities should be prohibited; concerted effort should be made to establish source of income. This should go hand in hand with the restoration of the ecosystem through reforestation is most degraded areas by enrich process

ACKNOWLEDGEMENTS

The Authors are grateful to the staff and management of Edo state ministry of Agriculture for their kind assistance and Igueben Local Government council for sending their staff for the field work

REFERENCES

- 1. Borrow, Nik and Demey Ron. (20012). "A guide to the birds of western Africa". Princeto University Press
- 2. Butler, S.J., Boccaccio, L., Gregory, R.D., Vorisek, P., Norris, K. (2010) Quantifying the impact of land-use change to European farmland bird populations. Agriculture, Ecosystems and Environment 137: 348-357
- 3. Eggers, J., Tröltzsch, K., Falcucci, A., Maiorano, L., Verburg, P.H., Framstad, E., Louette, G., Maes, D., Nagy, S., Ozinga, W., Delbaere, B. (2009) Is biofuel policy harming biodiversity in Europe? GCB Bioenergy 1: 18-34.
- 4. FAO and UNEP., 2020. The State of the World's Forests 2020. Forests, biodiversity and people. Rome. https://doi.org/10.4060/ca8642en
- 5. Gil-Tena, A., Saura, S., Brotons, L., 2007. Effects of forest composition and structure on bird species richness in a Mediterranean context: implications for forest ecosystem management. Forest Ecol. Manage. 242, 470–476
- 6. Hingston, A.B., Grove, S., 2010. From clearfell coupe to old-growth forest: succession of bird assemblages in Tasmanian lowland wet eucalypt forests. Forest Ecol. Manage. 259, 459–468.
- Isikhuemen E.M., Osayimwen F.E. and John-Onyijen E.E Floristic and mammalian composition and diversity in a logged-over secondary regrowth rainforest ecosystem in Amahor Forest Reserve, Edo State. African Journal of Agriculture, Technology and Environment Vol. 9(1): 308-320 June, 2020
- 8. Isichei, T.M (1995). Omo Biosphere Reserve, Current Status, Utilization of Biological Resources and Sustainable Management (Nigeria). Working Papers of the South-South Cooperation Programme on Environmentally Sound Socio-Economic Development in the Humid Tropics. UNESCO, Paris
- 9. Isikhuemen E.M., 10sayimwen F.E. and 2John-Onyijen E.E..Floristic and Mammalian Composition and Diversity in a Logged-Over Secondary Regrowth Rainforest Ecosystem 1n Amahor Forest Reserve, Edo State, Nigeria. African Journal of Agriculture, Technology and Environment Vol. 9(1): 308-320 June, 2020
- 10. Inouye DW, Barr B, Armitage KB and Inouye BD 2000 Climate change is affecting altitudinal migrants and hibernatingspecies.Proc. Natl. Acad. Sci.97: 1630-1633
- 11. Keay.R.W.J., (1989), Trees of Nigeria. A review version of Nigerian trees (1960, 1964) by R. W. J Karr J. R. & Roth R. R. (1971) Vegetation structure and avian diversity in several new world areas. *American Naturalist* 105: 423-435.
- 12. Keay, C. F.AOnochie and D. P Strandfield. Claridon Press Oxford University press: Pp 476 pp.
- 13. Manu, S.A., (2000) Effects of habitat fragmentation on the distribution of forest birds in south westerna with particular reference to the Ibadan Malimbes and other Malimbes, PhD
- 14. Mengistu, O.A. and Salami, J.E, (2007). Application of remote sensing and GIS inland use/land cover mapping and change detection in a part of south western Nigeria. African Journal of Environmental Science and Technology Vol. 1 (5), pp. 099 -109.
- 15. Murphy MT 2003 Avian population trends within the evolving agricultural landscape of eastern and central United States. Auk,120: 20-34
- 16. Ogunkoya OO and Dami A 2007 Information Sheet on Ramsar Wetlands (RIS) 2006-2008 version: Dagona Sanctuary Lake, Hadejia- Nguru wetlands. Ramsar Convention Bureau, Gland, Switzerland
- 17. Okosodo EF, Orimaye JO and Ogunyemi O. O. Habitat effect on the Abundance and Diversity of avian species was studied in Idanre Forest Reserve, South West Nigeria.International Journal of Plant, Animal and Environmental Sciences Page: xx
- 18. Nigerian Environmental Analysis. (2002). Biodiversity and Sustainable Forestry (BIOFOR) Pramod, P., R.J.R. Daniels, N.V. Joshi and M. Gadgil. 1997. Evaluating bird communities of Western Ghats to plan for a biodiversity friendly development.*Current Science*, 78:156-162.

| e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

- 19. Thiollay, J.M. (1998). Long-term dynamics of a tropical savanna bird community. *Biodiversity and Conservation* 7, 1291-1312. Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I., Willson M. F. (2001). Avian community organization and habitat structure. Ecology 55, 1017 1029.
- 20. Wilcove DS and Wikelski M 2008 Going, going, gone: is animal migration disappearing. PLoS Biol. 6: 1361-1364

A	Appendix 1, Bird species record	led in the study area
Family	Scientific Name	Common Name
Accipitridae	Aquila africana	Cassin's hawk Eagle
•	Kaupifalcoonogrammicus	Lizard Buzzard
	Polyboroidestypus	African Harrier Hawk
Alcedinidae	Ceyxlecontei	African Dwarf Kingfisher
	Halcyon badia	Chocolate-Backed Kingfisher
	Halcyon malimbica	Blue-Bresated Kingfisher
	Halcyon senegalensis	Woodland Kingfisher
Apodidae	Cypsiurusparvus	African Palm Swift
*	Apusaffinis	Little Swift
Bucerotidae	Tockusfaciatus	African Pied Hornbill
	Lophocerosnasutus	African Grey Hornbill
	Bycanistesfistulator	Piping Hornbill
	Horizocerusalbocristatus	white-Crested Hornbill
Campephagidae	Cyanograucalusazureus	Blue Cuckoo Shrike
CapitonidaeLybiidae	Tricholaemahirsuta	Hairy-Breasted Barbet
1 2	Pogoniulusatroflavus	Red-RumpedTinkeredbird
	Gymnobuccocalvus	Naked-Faced Barbet
	Pogoniulusscolopaceus	Speckled Tinkerbird
	Pogoniuluschrysoconus	Yellow-Fronted Tinkerbird
	Gymnobuccopeli	Bristled-Nosed Barbet
	Pogoniulussubsulphureus	Yellow-Throated Tinkerbird
Caprimulgidae	Caprimulguslongipennis	Standard-Winged Nightjar
1 0	Caprimulgusnigriscapularis	Black-Shouldered Nightjar
Cisticolidae	Bathmocercuscerviniventris	Black-Head Rufous Warbler
	Cisticolaerythrops	Red-Faced Ccisticola
	Camaropterachloronota	Olive-Green Camaroptera
	Priniabairdii	Banded Prinia
	Camaropterabrevicaudata	Grey Backed Camaroptera
	Priniasubflava	Tawny- Flanked Prinia
	Apalisjacksoni	Black Throated Apalis
Columbtdae	Treroncalvus	African Green Pigeon
	Turturbrehmeri	Blue Headed Wood Dove
	Spilopeliasenegalensis	Llaughing Dove
	Streptopeliasemitorquata	Red Eyed Dove
	Turturtympanistria	Tambourine Dove
Coraciidae	urystomusglaucurus	Broad Billed Roller
	Coraciasabyssinicus	Abyssinian Roller
	Coraciascyanogaster	Blue Bellied Rolle
Cuculidae	Chrysococcyxcupreus	African Emerald Cuckoo
	Centropusgrillii	Black Coucal
	Cuculusclamosus	Black Cuckoo
	hrysococcyxcaprius	Diederik Cuckoo
	Cercococcyxmechowi	Dusky Long-Tailed Cuckoo
	Chrysococcyxklaas	Klaas's cuckoo
	Centropussenegalensis	Senegal Coucal
	Ceuthmocharesaereus	Yellowwbill
Dicruridae	Dicrurusadsimilis	Fork-Tailed Drongo
Estrildidae	Spermestes bicolor	Black-and-White Mannikin
		-

ISSN 2792-3983 (online), Published under Volume: 1 Issue: 5 in October-2021

Copyright (c) 2021 Author (s). This is an open-access article distributed under the terms of Creative Commons Attribution License (CC BY). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

| e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

	Nigrita bigolor	Chastnut Brassted Nigrita
	Nigritacanicanillus	Grey-Headed Nigrita
	Nigritaluteifrons	Dale Fronted Nigrita
	Lagonostistasonogolo	Pade-Floited Nighta
	Cryptospizerojehenovij	Red-Diffed Filenitch
	Spermonhagaruficanilla	Red-Faced Chinsonwing
	Spermophagahaematina	Western Bluebill
	Nigritafusconotus	White Breasted Nigrita
	Parmontilarubrifrons	Red Fronted Antrecker
	Parmoptilawoodhousei	Woodbouse's (Pad Headed) Antracker
	Spermestescucullata	Spermestescucullatus
Hirundinidae	Cecropissemirufa	Red Breasted Swallow
Thunuhuhude	Prodotiscusinsignis	Cassin's honeyquide
	Dryoscopussenegalensis	Red Eved Puffback
	Malaconotuslagdeni	Lagden's Bush Shrike
Malaconotidae	Dryoscopussabini	Laguen's Dush Shirke
Walaconoliuae	Dryoscopussabini	Sabine's Puffback
Meronidae	Meropsgularis	Black Bee Ester
Wieropidae	Meropepusillus	Little Bee, Ester
	Meropsalbicollis	White Throated Bee, Ester
Monarchidae	Mujagracastaneigular	Chestnut, Capped Elycatcher
Mussicapidae	Fraseriacereata	African Forest Elyesteher
Wiuscicapiuae	Trachocercuspitens	Blue Headed Crested Elycatcher
	Cossyphacyanocampter	Blue Shouldered Robin Chat
	Stiphrorpiserythrothoray	Forest Pobin
	Cercotrichasleucosticta	Forest Scrub Robin
	Shappardiagyornithonsis	Lowland Akalat
	Ficedulabypoleuca	Died Elycatcher
	Muscicapainfuscata	Sooty Elycatcher
Musophagidae	Tauracopersa	Guinea Turaco
Nectariniidae	Cinnyrischloropygius	Olive-Bellied Suppird
	Chalcomitraadelberti	Buff-Throated Sunbird
	Hedydipnacollaris	Collard Sunbird
	Cyanomitraverticalis	Green-Headed Sunbird
	Anabathmisreichenbachii	Reichenbach1's Sunbird
	Sheppardiacyornithopsis	Splendid Suppird
	Cinnyriscoccinigastrus	Support Support
	Cinnyrisvenustus	Variable Sunbird
Oriolidae	Orioluslarvatus	Western Black-Headed Oriole
	Oriolushosii	Black-Winged Oriole
Phoeniculidae	Phoeniculuscastaneiceps	Forest Wood- Hoopoe
Platysteiridae	Platysteiracastanea	Chestnut Wattle-Eve
	Megabyasflammulatus	African shrike-flycatcher
	Platysteiracvanea	Common Wattle-Eve
Ploceidae	Malimbusrubricollis	Red- Headed Malimbe
	Ploceusnigerrimus	Velliot's Black Weaver
	Malimbusscutatus	Red-Vented Malimbe
	Ploceus tricolor	Yellow Mantted Weaver
	Ploceuscuculatus	Village Weaver
	Malimbusibadanensis	Ibadan Malimbe
Prionopidae	Prionopscaniceps	Red Billed Helmet-Strike
Pycnonotidae	Eurillasansorgei	Ansorge'sgreenbul
	Bledasyndactylus	Red-Tailed Bristlebill
	Pycnonotusbarbatus	Common Bulbul
	Bledaeximius	Green-Tailed Bristlebill

| e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

	Baeopogon indicator	HoneyguideGreenbul		
	Phyllastrephusicterinus	IcterineGreenbul		
	Eurillasvirens	Little Greenbul		
	Eurillascurvirostris	Plain Greenbul		
	Chlorocichla simplex	Simple Greenbul		
	Phyllastrephusscandens	Red-tailed leaflove		
	Nicatorchloris	Western Nicator		
	Eurillaslatirostris	Yellow Whiskered Greenbull		
Rallidae	Sarothrurapulchra	White Spotted Flutail		
	Gallinulachloropus	Common Moorhen		
Recurvirostridae	Himantopushimantopus	Black-Winged Stilt		
Strigidae	Strixwoodfordii	African Wood Owl		
Sturnidae	Poeopteralugubris	Narrow-Tailed Starling		
	Hylopsarpurpureiceps	Purple-Headed Starling		
Macrosphenidae	Sylviettavirens	Green Combec		
Hyliidae	Hyliaprasina	Green Hylia		
Macrosphenidae	Macrosphenusconcolor	Grey Longbill		
Cisticolidae	Eremomelabadiceps	Rufous- Crowned Eremomela		
Muscicapidae	Alethecastanea	Fire Crested Alethe		
Turdidae	Geokichla prince	Grey Ground Thrush		
Muscicapidae	Alethediademata	White-Tailed Alethe		
Turdidae	Neocossyphuspoensis	White-Tailed Ant Thrush		
Viduidae	Viduamacroura	Pin-Tail Whaydah		
Zosteropidae	Platysteiraconcreta	Yellow White Eye		
Scolopacidae	Tringanebularia	Common Redshank		
	Tringatocanus	Redshank		
	Tringaerythropus	Spotted Redshank		
	Tringaochropus	Green Sandpiper		
	ActitisHypoleucos	Common Sandpiper		
	Calidris alba	Sanderling		
Charadriidae	Charadriustricollaris	Three Banded Plover		
	Charadriusforbesi	ForberaessPlo		
	Charadriuspecuarious	kittlitzs Plover		
	Charadriushiaticula	Common Ring Plover		
	Charadriusalexandrinus	Kentish Plover		
	Vanelluslugubris	Lesser Black Winged Lapwing		
	Vanallusspinosus	Spur Winged Lapwing		
	Vanallussenegallus	African Wattled Lapwing		
Glareolidae	Glareolapratincola	Collard Pratincole		
	Glareolacinerea	Grey Pratincole		
Scopidae	Scopus umbretta	Hamerkop		
Ardeidae	Ardea alba	Great Egret		
	Egrettagarzetta	Little Egret		
	Butoridesstriata	Green-Backed Heron		
		1		

Appendix 2,	Trees	species	recorded	in	the	study	area
						~	

11 / 1			
Name of Tree Species	DBH	MH	Frequency
Adenostemmaperrotteii	35	13	7
Adenialobate	43	17	6
Adenostemmaperrotteii	40	19	2
Afzelia Africana	233	34	9
Albizacoriaria	188	31	1
Albizagummifera	199	29	8
Albiziaferruginea	212	32	19
Albiziazygia	246	32	6

| e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

Allanblackia floribunda	178	35	4
Alstoniaboonei	280	31	4
Alstoniacongensis	145	30	6
Altrocarpusheterophylla	47	17	9
Amphimaspterocarpoides	190	29	2
Anarcadiumoccidentalis	57	17	6
Angvlocalvxzenkeri	133	28	8
Anonamuricata	34	14	6
Anonidiummanni	48	18	4
Anopyxisklianeana	67	21	5
Anthoceleistanobilis	76	24	3
Anthonothamacrophylla	59	21	4
Antiarisafricana	233	35	3
Antiariswelwitschii	222	36	2
Antrocarvonmicraster	97	28	5
Aristolochinaningens	111	20	4
Artocarnusattilis	79	27	7
Aviconiagormirans	87	30	5
Avicentugermitans	00	24	0
Ralanitaswilsonana	12	12	5
Datanties witsonana Dara bi aniti da	43	15	3
Daphianiiaa Datomiafintulo	57	20	1
Bateria fistulosa	57	21	4
Berliniagrandiflora	11	25	8
Berlinia SPP	65	25	3
Bidenspilosa	14	8	3
Blighiasapida	122	27	2
Blightawelwithil	34	12	6
Bombaxbrevicuspe	133	28	6
Bosqueiaangolensis	112	22	6
Brachystegiaeurycoma	431	35	13
Brachystegianigerica	344	39	19
Brideliaferruginea	375	21	4
Brideliamicrantha	57	24	6
Bryophyllumpinnantum	89	21	9
Canariumschweinfurthii	76	21	7
Carpolobialutea	64	23	4
Cassia alata	10	8	5
Cassia hrusta	87	24	7
Cathiumhispicum	66	21	9
Ceibapentandra	398	35	36
Celtisaldolfi- friderici	98	23	4
Celtismildibraedii	56	21	5
Celtismildibraedii	87	23	6
Celtiszenkeri	111	21	5
Chrysophyllumabidun	231	31	4
Chrysophyllumdelevoyi	234	30	4
Chrysopyllumafricana	67	21	5
Cissampelosmucronata	41	20	2
Cleistopholis patens	65	21	8
Cola acuminate	110	25	8
Cola ginganta	221	31	8
Cola lateritia	245	31	8
Cola melleni	64	21	5
Combretodendronmacrocarpum	131	24	8
Cordiamillenii	132	25	5

ISSN 2792-3983 (online), Published under Volume: 1 Issue: 5 in October-2021 Copyright (c) 2021 Author (s). This is an open-access article distributed under the terms of Creative Commons

Copyright (c) 2021 Author (s). This is an open-access article distributed under the terms of Creative Commons Attribution License (CC BY). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

| e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

Crescentiacuiete	46	20	11
Cvlicodiscusgabunensis	76	26	6
Cymbonogoncitratus	99	27	0
Spathodeacompanulata	132	21	8
Daniellaogea	341	34	4
Deinhollia niñata	88	24	5
Deenbouru pinuru Deenlatsiasubericarna	42	21	3
Dialiumquinconso	131	24	0
Diananguineense	121	27	6
Diosnyrosalboflayascans	67	21	7
Diospyrosaubojavescens	55	20	9
Diospyrosuenuo	62	25	6
Distomonanthushonthamianus	87	26	6
Flassisquinasis	110	20	6
Entada Africana	122	27	9
Entandronbraamaanaolonso	365	34	7
Entandronhragma utilo	366	39	10
Emanarophragma une	174	25	19
En yuuroputeumsuuveotens Eagaramagrambulla	05	23	4
Fagaramacrophylla Fioussum	132	21	5
Ficussur Eigene en en eige	133	27	5
r icuscapensis	121	20	3
FicusEsasperata	400	39	30
Ficusgiumosa Eigen	98	25	0
Ficusglumosa	57	21	0
Ficuslatifolia	456	20	3
Ficusthonugu	54	21	3
Funtumia Africana	136	28	14
Funtumia elastic	90	23	3
Garcinia kola	122	21	3
Gossweilorodendronbalsaminiferum	34	14	1
Grewiavenusta	43	20	2
Guareacedrata	/9	27	1
Guibourtia sp.	89	23	1
Halleacilata	38	12	1
Hannoaklaineana	/6	23	1
Heveabrasiliensis	85	25	1
Homaliumaylmeri	39	11	1
Hunteria umbellate	63	23	2
Hymenostegiaafzelii	42	21	2
Icacinatrichantha	56	23	1
Irvingiagabonensis	172	28	2
Irvingiagrandifolia	129	30	1
Khayaivorensis	34	12	1
Kigelia Africana	199	32	3
Lanneawelwitschi	73	23	2
Lonchocarpusgriffonianus	12	21	5
Lophiraalata	401	29	1
Lovoatrichilioides	155	21	1
Maesobotryabateri	122	24	2
Maesopsiseminii	26	8	/
MagniferalIndical	6/	26	1
Memocylonblakeoides	210	34	8
Miliciaexcelsa	239	45	3
Mulleticecerriceus	56	24	2
monodoramvristica	45	21	

ISSN 2792-3983 (online), Published under Volume: 1 Issue: 5 in October-2021 Copyright (c) 2021 Author (s). This is an open-access article distributed under the terms of Creative Commons

Attribution License (CC BY). To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/

| e-ISSN: 2792-3983 | www.openaccessjournals.eu | Volume: 1 Issue: 5

Musangacecropioides	131	21	1
Myrianthusarboreus	133	23	3
Napoleoneavogelii	98	20	2
Naucleadiderrichii	67	22	13
Nesogordoniapapaverifera	79	20	5
Newbouldialaevis	73	21	5
Ntrocarvonmicraster	84	22	1
Okoubakaaubrevillei	54	21	1
Olaxsubscornioidea	59	20	1
Oxytenantheraabyssinica	78	21	2
Pachvelasmatessmannii	53	20	2
Panda oleasa	45	21	3
Pausinystaliamacroceras	87	24	2
Pentaclethramacronhylla	99	23	3
Pontaclethramacrophylla	87	26	3
Pontaclethramacrophylla	84	20	1
Pontadosmahutyracoa	55	21	3
Pintadoniastrumafricanum	145	20	1
Polyalthiasuayeolons	34	8	2
1 Olyaunusuuveolens Polyaaratoograpusparviflorus	122	23	1
Psidiumauaiaya	122	5	1
1 Sutumguajava Ptoroograussovauvii	28	7	1
Ptoroogrpusosun	117	26	2
Progenthusgengolonsis	221	20	2
P ycaninusangolensis	08	24	1
Rauvolfiavomuoria Rauvlfiatzankulla	90	24	2
Ravoijiairapnyiia Disina dan dramban dalatii	23	/	2
Ricinoaenaronneuaelolii	52	9	3
Koinmannianispiaa	0/	24	1
Saacharumojjicinarum	54	20	2
Scottettiacortacea	12	20	3
Snysepatumaticijicum	62	9	2
Soponatamomotin	46	21	3
Spainoaeacampanulalu	40	22	1
Stauanashpuata	/0	20	2
Stercultaoblonga	49	21	3
Sterculturagacanina	24	22	2
Stercultacortata	52	23	1
Stombostagranatjotta	62	28	1
Takama antan masakusin kar	122	27	3
Tabernaemontanapacnysiphen	142	29	1
Terminallaivorensis	143	29	4
Terminaliasuperba	10/	30	2
Tetracarpiaiumconophorom	112	21	1
Tetrapleuratetaptera	143	25	2
I neobroma cacao	13	/	0
I ramaorientalis	25	10	2
Ireculta Africana	1/5	30	4
Trichilialanata	54	21	1
Trichiliaprieuriana	54	21	1
Triplochitonscleroxylon	257	3/	4
Triumfettapentandra	38	21	2
Uvariopsisdioica	11	5	4
Xvloniaaethionica	29	17	4