

COMPARATIVE STUDY ON STRUCTURAL MODELING, SIMULATION AND ANALYTICAL DESIGN OF REINFORCED CONCRETE TRIPLE BOX CULVERT USING STAADPRO AND SPREADSHEET

¹Adeniran, J. Adeala & ¹Joseph, O. Olaoye

¹Department of Civil Engineering Federal Polytechnic, Ilaro, Ogun state, Nigeria adeniran.adeala@federalpolylaro.edu.ng joseph.olaoye@federalpolyilaro.edu.ng 08064999179

Abstract

Culvert is hydraulic structure that is used to convey and discharge water as part of drainage system. Many roads are damaged by floods consequent upon unavailability or inefficient drainage system which claim many lives and properties. In designing culvert, the analysis and design especially multiple cell-boxes is painstaking. Due to the cumbersome analysis of culvert, several structural engineering softwares are developed and used for the analysis and design of culverts such as spreadsheet. However, there is no RCC spread sheet written and developed that can be used for analysis and design of multi box culvert which will make design simplier and faster on the field and in the design office. The comparative analysis and design of multi box culvert using Staadpro and Spreadsheet is undertaken in this research. The result produced by staadpro is not as reliable as that of spreadsheet in term of analysis. In conclusion, it is reliable to develop program as an engineer such as spreadsheet, MATLAB, C++, ABAQUS, ARDENAL e.t.c to solve engineering problem because most of the softwares come with definite program and assumption which are sometimes not clear to engineer.

Keywords: culvert, floods, analysis, design, staadpro, spreadsheet

Introduction

Culvert is defined as a tunnel or buried structure constructed under roadways or railways to provide cross drainage or take electrical cables from one side to other. It is totally enclosed by soil or ground. The design of culvert is based on hydrological properties which are intensity of rainfall (i), duration of rainfall (t), frequency of rainfall, catchment area (A) and hydraulic properties of flow such as flow rate (Q), velocity of flow (V) and cross sectional area of culvert which determine its size.

Fig 1: Coming full

circle

(http://oregonewrg.org/wp-content/uploads/2015/12/Sheean-Culvert-Presentation.pdf)

The positioning of culverts across a water body is dependent on economy and uses. The three main factors of design are safety, intended use of structure and economy but safety is most important factor to be considered in design of structures (BS 8110-1, 1997). The earliest empirical methods advocated for oversized designs is that size must be proportional to the greatest quantity of water which can ever be required to pass and should be large enough to admit a boy to enter to clean them out (see Fig.1). The empirical methods enunciated in Dun's table in the 1900s, became slightly more sophisticated with no hydraulic considerations. Away from traditional software designing multiple

cells culvert there is need for more user friendly, reliable and easy means of designing such culvert and even serve as tool for engineering design if such projects comes.

Table 1: Dun Drainage Table

						1	Table 1							
				Ate	thison, To	The Dun peka & Sa	Drainage nta Fe Ra	Table ailway Sy	stem (1906	9				
Areas			Areas	of W	aterway				Areas		Area	s of Waterw	wy	
Square Miles	Missouri	Cast Pipe.	Box and Arch		ch Percentage of Column 2		2	in Square	Missouri	F	Percentage of Column 2			
ALLIEN	Kansus Fit. Use 80 Per 1st Fig. I Cent 2d. Fig. 1	1st Fig. Di 2d. Fig. Be	s. iam. ench	Illinois	Indian Territory	Texas	New Mexico	perios.	Kansas	Illinois	Indian Territory	Texas	New Mexico	
1	2	3	4		5	6	7	8	1	2	5	6	7	8
01 02 03 04 05 06 07 .08 .09 .10 .15 20	2.0 4.0 6.0 7.5 9.0 13.5 13 16 25 32	1-24 in: 1-36 ·· 1-36 ·· 1-42 ·· 1-42 ·· 1-42 ·· 1-42 ·· 2-36 ·· 2-36 ·· 2-36 ·· 2-36 ··	2 x1 2 x3 2 1/2 x3 3 1/2 x3 3 1/2 x3 2 1/2 x3 3 x4 4 x4 5 x4 5 x4 5 x5 5 x5 5 x5 5 x5 5	B	East of Streator use 60 per cent	South of Purcell use Texas Column	Use Column 2	Use Column 2	24 25 28 30 32 34 38 40 45 55	1,060 1,100 1,140 1,180 1,220 1,255 1,290 1,320 1,320 1,350 1,435 1,510	East of Streator use 60 per cent	South of Parcell use Texas Column	110 110 110 110 110 110 110 110 110 110	94 92 92 92 91 91 91 91 91 91 91

James Dun, 1906

Rational method was formulated and described by Irish engineer (T.Mulvaney,1851) .Though, he considered the hydraulics but no inlet/outlet control was included. The method was not widely accepted until much more later.In 1926, ground breaking research introduced modern culvert hydraulics by Bureau of Public Roads and University of Iowa called corrugated metal pipe design which paid more attention to roughness coefficient and inlet/ outlet control unlike rational method (D E. Metzler & H.Rouse) Also in 2013, Water Crossing Design Guidelines measure the channel width, the watershed, its area and rainfall, its vegetation and substrate. Thus the channel width acts as a surrogate for the hydraulic analysis.

Methodology

The analysis and design of a 3-cell culvert were undertaken with the Staadpro and Excel spreadsheet program and the results were compared.

The procedure followed for structural design of triple box culvert are as enunciated below:

- 1. Estimate total load on top slab which includes weight of earth fill, axle load of vehicle and self-weight of top slab.
- 2. Determine total load on wall which include total load on top slab and self-weight of wall
- 3. Determine total load on bottom slab which include total load on wall and self-weight of bottom slab.
- 4. Moment distribution method was used to analyse the culvert to determine the shear force , bending moments (support moments and span moments)
- 5. Span reinforcement and support reinforcement were designed.

Result Analysis

Loading and Structural Analysis Formulae Self weight of top and bottom slab = $[l_1*]c*$ thickness of slab Earth pressure at the top of wall $P_t = K_a* [l_f2*]s*h_1$ Earth pressure at the top of wall $P_b = K_a* [l_f2*]s*h_2$ Axle wheel load = W/4h² Fixed end moment (M^F) = +_ Wl²/12 for uniformly distributed load Fixed end Moment (M^F) = +_ Wl²/12+_Wl²/20(Linearly Varying load) Fixed end Moment (M^F) = +_ Wl²/12+_Wl²/30(Linearly Varying load) Maximum span moment occurs where $\partial M/\partial x = 0$ Statics shear force (V_s) = wl/2 Dynamic shear force (V_{dm}) = / M_1 /- / M_2 //L $V = V_S + V_{dm}$

Table 2: SPREADSHEET FOR STRUCTURAL ANALYSIS AND DESIGN OF TRIPLE BOX CULVERT

Loading

REFERENCES			CALCULATIONS	OUTPUT	UNITS
BS 5400 part 2	2,				
table 1	Dead load				
	design parameters;				
	?f1(Self weight of culvert)	1.15			
	?f2 (earth fill)	1.5			
	?f3 (HA vehicle)	1.5			
	Unit weight of concrete	24			KN/m3
	Unit weight of soil	18			KN/m3
	Top slab	300			mm
	bottom slab	300			mm
	walls	250			mm
	No of cell walls	4			
	Height of walls	2250			mm
	Height of fill	1000			mm
	Span of culvert	6750			mm
	For 300mm top slab		8.28	8.28	KN/m2
	For300mm base slab		8.28	8.28	KN/m2
	For 250mm cell walls		9.20	9.20	KN/m2
	For weight of fill		27.00	27.00	KN/m2
	Total dead load		52.76	52.76	KN/m2
	span of each box	2250			mm
	Width (B)	1000			mm

REFERENCES	Analysis of foreas	CALCULATIONS	OUTPUT	REMARK	
	Analysis of forces				
	Total bending pressure on members				
Members					
Top slab		167.63	KN/m2		
bottom slab		185.11	KN/m2		
Earth pressure at the tor	o of wall	62.12	KN/m2		
Earth pressure at the bo	ttom of wall	82.37	KN/m2 KN/m2		
FEM		20.23	IXI (/ III2		
MF AB		-31.33	KNm		
MF BA		29.62	KNm		
MEDG		70.72			
MF BC		-70.72	KNm		
MF CB MF CH		/0.72	KNM		
MI CII		0.00	KINII		
MF CD		-70.72	KNm		
MF DC		70.72	KNm		
MF DG		0.00	KNm		
MF DE		-70.72	KNm		
NIF ED		10.72	NINII		
MF EF		-29.62	KNm		
MF FE		31.33	KNm		
MF FG		-78.09	KNm		
MF GF		78.09	KNm		
MF GD		0.00	KNm		
MECH		78.00	KNm		
MF UG MF HG		-78.09	KNm		
		78.09	KINII		
MF HA		-78.09	KNm		
MF AH		78.09	KNm		
MF HC		0.00	KNm		
Moment of inertia					
Itop	0.00225		m3		
IDOLLOM	0.00225		m3		
Iwaii	0.001302085		1115		
Stiffness ratio					
ktop	0.00000001				
kbottom	0.00000001				
kwall	5.78704E-10				
Distailanti					
DEAD	0 266568015	0.37			
DFAH	0.530508915	0.63			
Dirini	0.055151005	0.05			
DF BC	0.633431085	0.63			
DF BA	0.366568915	0.37			
DF CB	0.387791741	0.39			
DF CD DF CH	0.387791741	0.39			
Dr.Cu	0.224410317	0.22			
DF DC	0.387791741	0.39			
DF DE	0.387791741	0.39			
DF DG	0.224416517	0.22			
DF ED	0.366568915	0.37			
DF EF	0.633431085	0.63			
DF FF	0 366568015	0.27			
DF FG	0.300308915	0.57			
5110	0.000401000	0.05			
DF GF	0.387791741	1 day 0.39	I Adoala P	Issanh O	Ol-
DF GH	0.387791741	Auentran, 0.39	s. Auculu &	Joseph, O.	Joint
DF GD	0.224416517	0.22			
DF HG	0.387791741	0.39			

Fig. 3: Load arrangement on culvert

Table 3: STRUCTURAL ANALYSIS (SPREADSHEET FOR MOMENT DISTRIBUTION OF TRIPLE BOX CULVERT)

JT	A		В			С		C)			E		F		G			Н	
MEM	AH	AB	BA	BC	СВ	CD	СН	DC	DE	DG	ED	EF	FE	FG	GF	GH	GD	HG	HC	HA
DF	0.63	0.37	0.37	0.63	0.39	0.39	0.50	0.39	0.39	0.50	0.37	0.63	0.37	0.63	0.39	0.39	0.22	0.39	0.22	0.39
MF	78.09	-31.33	29.62	-70.72	70.72	-70.72	0.00	70.72	-70.72	0.00	70.72	-29.62	31.33	-78.09	78.09	-78.09	0.00	78.09	0.00	-78.09
BM	-46.7	6	41.1	10		0.00			0.00		-41	.10	46	5.76		0.00			0.00	
DM	-29.62	-17.14	15.06	26.03	0.00	0.00	0.00	0.00	0.00	0.00	-15.06	-26.03	17.14	29.62	0.00	0.00	0.00	0.00	0.00	0.00
СОМ	0.00	7.53	-8.57	0.00	13.02	0.00	0.00	0.00	-7.53	0.00	0.00	8.57	-10.41	0.00	14.81	0.00	0.00	0.00	0.00	-14.81
BM	-7.53	3	8.5	7		-13.02			7.53		-8.	57	10).41		-14.81			14.81	
DM	-4.77	-2.76	3.14	5.43	-5.05	-5.05	-6.51	2.92	2.92	3.77	-3.14	-5.43	3.82	6.60	-5.74	-5.74	-3.32	5.74	3.32	5.74
СОМ	2.87	1.57	-1.38	-2.52	2.71	1.46	1.66	-2.52	-1.57	-1.66	1.46	1.91	-2.71	-2.87	3.30	2.87	1.88	-2.87	-3.25	-2.39
BM	-4.44	1	3.9	0		-5.84			5.76		-3.	37	5	.59		-8.05			8.51	
DM	-2.81	-1.63	1.43	2.47	-2.26	-2.26	-2.92	2.23	2.23	2.88	-1.23	-2.13	2.05	3.54	-3.12	-3.12	-1.81	3.30	1.91	3.30
COM	1.65	0.72	-0.81	-1.13	1.24	1.12	0.96	-1.13	-0.62	-0.90	1.12	1.02	-1.07	-1.56	1.77	1.65	1.44	-1.56	-1.46	-1.41
BM	-2.37	7	1.9	5		-3.31			2.65		-2.	14	2	.63		-4.86			4.43	
DM	-1.50	-0.87	0.71	1.23	-1.28	-1.28	-1.65	1.03	1.03	1.33	-0.78	-1.36	0.96	1.66	-1.88	-1.88	-1.09	1.72	0.99	1.72
СОМ	0.86	0.36	-0.43	-0.64	0.62	0.51	0.50	-0.64	-0.39	-0.55	0.51	0.48	-0.68	-0.94	0.83	0.86	0.66	-0.94	-0.83	-0.43
BM	-1.22	2	1.0	7		-1.63			1.58		-1.	00	1	.62		-2.35			2.20	
DM	-0.77	-0.45	0.39	0.68	-0.63	-0.63	-0.81	0.61	0.61	0.79	-0.37	-0.63	0.59	1.03	-0.91	-0.91	-0.53	0.85	0.49	0.85
СОМ	0.43	0.20	-0.22	-0.32	0.34	0.31	0.25	-0.32	-0.18	-0.26	0.31	0.30	-0.32	-0.46	0.51	0.43	0.39	-0.46	-0.41	-0.38
BM	-0.62	2	0.5	4		-0.89			0.76		-0.	60	0	.77		-1.33			1.25	
DM	-0.40	-0.23	0.20	0.34	-0.35	-0.35	-0.45	0.30	0.30	0.38	-0.22	-0.38	0.28	0.49	-0.52	-0.52	-0.30	0.48	0.28	0.48
СОМ	0.24	0.10	-0.11	-0.17	0.17	0.15	0.14	-0.17	-0.11	-0.15	0.15	0.14	-0.19	-0.26	0.24	0.24	0.19	-0.26	-0.22	-0.20
BM	-0.34	1	0.2	9		-0.46			0.43		-0.	29	C	.45		-0.68			0.68	
DM	-0.22	-0.12	0.11	0.18	-0.18	-0.18	-0.23	0.17	0.17	0.22	-0.11	-0.18	0.16	0.28	-0.26	-0.26	-0.15	0.26	0.15	0.26
СОМ	0.13	0.05	-0.06	-0.09	0.09	0.08	0.08	-0.09	-0.05	-0.08	0.08	0.08	-0.09	-0.13	0.14	0.13	0.11	-0.13	-0.11	-0.11
BM	-0.18	3	0.1	5		-0.25			0.22		-0.	17	0	.22		-0.38			0.35	
DM	-0.12	-0.07	0.06	0.10	-0.10	-0.10	-0.13	0.08	0.08	0.11	-0.06	-0.11	0.08	0.14	-0.15	-0.15	-0.09	0.14	0.08	0.14
EM	44.07	-44.07	39.13	-39.13	79.06	-76.93	-9.12	73.18	-73.83	5.87	53.37	-53.37	40.95	-40.95	87.11	-84.50	-2.61	84.37	0.95	-85.32
SM	135.88	4	3.25	126.99		107.96	0.00		116.55	0.00		52.	82	141	.35	116.55	0.00		0.00	
Vs	208.24	85.07	77.47	188.58	188.58	188.58	0.00	188.58	188.58	0.00	188.58	77.47	85.07	208.24	208.24	208.24	0.00	208.24	0.00	208.24
Vdm	-18.33	2.20	-2.20	-17.75	17.75	1.67	3.63	-1.67	9.10	1.45	-9.10	5.52	-5.52	-20.51	20.51	0.06	-1.45	-0.06	-3.63	18.33
V	189.91	87.27	75.28	170.83	206.33	190.25	3.63	186.91	197.67	1.45	179.48	82.99	79.55	187.73	228.76	208.30	-1.45	208.19	-3.63	226.58

Result Analysis from Staadpro

Fig 4: Bending moment diagram(staadpro)

Fig 5: Shear force diagram (Staadpro)

Table 4. CTDUCTUDAL	DECICN OF DE	INIEODCED (CONCRETE	TDIDI E	DOV	CIII VED	T.
Table 4: STRUCTURAL	DESIGN OF KE	ΙΝΓΟΚΈΕΡΙ	LUNUKEIE	IKIPLE	DUA	UULVER	

REFERENCES	SYMBOLS	CALCULATIONS	OUTPUT	REMARK
BS 8110-1,1997				
Design				
Wall	М	52.82	KNm	
Cover	с	40.00	mm	
Main bar diameter	Φ	16.00	mm	
Overall depth	h	250.00	mm	
Width	b	1000.00	mm	
Effective depth	d	202.00	mm	
Grade of high yield steel	fy	380.00	N/mm ²	
Grade of mild steel	fyv	250.00	N/mm ²	
Grade of concrete	fcu	25.00	N/mm ²	
Design coefficient	K	0.05		
Lever arm	Z	189.62	mm	
Area of steel required	Asreq	771.63	mm ² /m	

Area of steel provided	Asprov	893.00	mm ² /m	Y16-225
				c/c(NF)
Ton slah				
	М	126.99	KNm	
Cover	C	40.00	mm	
Main bar diameter	Φ	20.00	mm	
Overall depth	h	300.00	mm	
Width	b	1000.00	mm	
Effective depth	d	250.00	mm	
Grade of high yield steel	fy	380.00	N/mm ²	
Grade of mild steel	fyv	250.00	N/mm ²	
Grade of concrete	fcu	25.00	N/mm ²	
Design coefficient	K	0.08		
Lever arm	Ζ	224.90	mm	
Area of steel required	Asreq	1564.10	mm²/m	
Area of steel provided	Asprov	1800.00	mm²/m	Y20-175
				c/c(B)
Bottom slab				
	М	141.35	KNm	
Cover	с	40.00	mm	
Main bar diameter	Φ	20.00	mm	
Overall depth	h	300.00	mm	
Width	b	1000.00	mm	
Effective depth	d	250.00	mm	
Grade of high yield steel	fy	380.00	N/mm ²	
Grade of mild steel	fyv	250.00	N/mm ²	
Grade of concrete	fcu	25.00	N/mm ²	
Design coefficient	K	0.09		
Lever arm	Ζ	221.66	mm	
Area of steel required	Asreq	1766.47	mm²/m	
Area of steel provided	Asprov	2090.00	mm²/m	Y20-150
				c/c(B)
Support reinforcement				
for top slab				
	М	79.23	KNm	
Cover	с	40.00	mm	
Main bar diameter	Φ	20.00	mm	

Overall depth	h	300.00	mm	
Width	b	1000.00	mm	
Effective depth	d	250.00	mm	
Grade of high yield steel	fy	380.00	N/mm ²	
Grade of mild steel	fyv	250.00	N/mm ²	
Grade of concrete	fcu	25.00	N/mm ²	
Design coefficient	K	0.05		
Lever arm	Ζ	235.02	mm	
Area of steel required	Asreq	933.92	mm ² /m	
Area of steel provided	Asprov	1010.00	mm ² /m	Y16-200 c/c(T)
Bottom slab				
	М	88.32	KNm	
Cover	c	40.00	mm	
Main bar diameter	Φ	20.00	mm	
Overall depth	h	300.00	mm	
Width	b	1000.00	mm	
Effective depth	d	250.00	mm	
Grade of high yield steel	fy	380.00	N/mm ²	
Grade of mild steel	fyv	250.00	N/mm ²	
Grade of concrete	fcu	25.00	N/mm ²	
Design coefficient	K	0.06		
Lever arm	Z	233.16	mm	
Area of steel required	Asreq	1049.28	mm²/m	
Area of steel provided	Asprov	1150.00	mm ² /m	Y16-150 c/c(T)
Deflection				
Service stress	fs	214.12	N/mm ²	
	M/bd^2	2.26	N/mm ²	
Modification factor	Mf	1.24		
support condition	Sc	26.00		
Required depth	dreq	69.63	mm	TRUE
Shear along bottom slab				
Maximum shear	V	229.39	KN	
shear stress		0.92	N/mm ²	
	100Asp/bd	0.84		
		0.67	N/mm ²	TRUE

Links spacing			
	Asv/Sv	1.68	R12-125 c/c

Design Formulae

Effective depth $d = h-c - \Phi/2$

Design coefficient $K = M/bd^2 f_{cu}$

Lever arm
$$Z = d \left[0.5 + \sqrt{0.25 - \frac{K}{0.9}} \right]$$

 $AS_{req} = \frac{M}{0.95 f_y Z}$

Modification Factor
$$M_F = 0.55 + \left[\frac{477 - f_s}{120\left(0.9 + \frac{M}{bd^2}\right)}\right]$$
, Where service $f_s = \frac{2}{3}f_y \frac{As_{req}}{As_{prov}}$

Table 5: End Moments (KNm)

MEMBER	SPREADSHEET	STAADPRO	Difference (%)
AB	-44.07	-69.56	-57.84
AH	44.07	76.93	-74.56
BA	39.13	69.56	-77.77
BC	-39.13	-69.56	-77.77
CB	79.06	69.56	12.02
СН	-9.12	0	100.00
CD	-76.93	-69.56	9.58
DC	73.18	69.56	4.95
DG	5.87	0	100.00
DE	-73.83	-69.56	5.78
ED	53.37	69.56	-30.34
EF	-53.37	-31.55	40.88
FE	40.95	31.55	22.95
FG	-40.95	-76.93	-87.86
GF	87.11	76.93	11.69
GD	-2.61	0	100.00
GH	-84.5	-76.93	8.96
HG	84.37	76.93	8.82
HC	0.95	0	100.00
HA	-85.32	-76.93	9.83

Table 6 : Span Moments (KNm)

MEMBER	SPREADSHEET	STAADPRO	Difference (%)
AB	43.25	15.35	64.51
BC	126.99	34.77	72.62
CD	107.96	34.77	67.79
DE	116.55	34.77	70.17
EF	52.82	15.35	70.94
FG	141.35	38.46	72.79
GH	116.55	38.46	67.00
HA	135.88	38.46	71.70
СН	0	0	0.00
DG	0	0	0.00

Table 7 : Property of material

Material	Concrete
Modulus of Elasticity (E)	21.718KN/m ²
(Poisson's ratio)	170 X10 ⁻³
Density(p)	2402.615Kg/m ³

Discussion

End moments (Support moment) (from table 5)

In computation of End moment (support moment) there was large variation using spreadsheet and staadpro as it has been observed that M^{F}_{AB} Spreadsheet = -44.07KNm while that of M^{F}_{AB} staadpro = -69.56KNm difference of -25.49KNm which is of 57.82% less than fixed end moment from staad and this will increase the area of reinforcement required and even lead to increase in section of concrete for the wall. For the bottom slab having maximum support moment (M^{F}_{GF}) of 87.11KNm from spreadsheet while that of 76.93KNm from Staadpro which has difference of 10.18KNm over staadpro and difference of 11.69% greater than staadpro output, similarly for top slab having maximum support moment(M^{F}_{CB}) of 79.06KNm spreadsheet and produced 69.56KNm from staadpro has a difference of 12.60KNm which has 12.02% more than staadpro output.

Span moments (from table 6)

It was observed that wall has maximum span moment $M_{AB} = 52.82$ KNm from spreadsheet which percentage difference of 70.94% over $M_{AB} = 15.35$ KNm from staad.. The top slab has maximum Span moment $M_{BC} = 126.99$ KNm from spreadsheet which is of 72.62% more than Fixed spam moment $M_{BC} = 34.77$ KNm from staadpro. Bottom slab has maximum span $M_{FG} = 141.35$ KNm from spreadsheet and that of staadpro produced 38.46KNm which has 72.79% difference more than $M_{FG} = 38.46$ KNm.

Shear force

The shear force is approximately the same for both (spreadsheet and staadpro)

Conclusion

It was observed that there was increase in end moments and span moments using spreadsheet because iteration number was distributing moments eight (8) times and from staadpro cannot been known due to assumption in which software had been written and developed and that of spreadsheet can be seen visually on excel sheet. The result produced by spreadsheet is realistic and dependable if compared to manual hand calculation. Young structural engineers must be able to write and develop program that will facilitate and make designs easy and in such a way it will be clearly understood on spreadsheet. The use of spreadsheet to write and develop program should be taken as crucial and integral part of curriculum in both universities and polytechnics especially in Engineering because the formulae are not hidden and well known to engineers.

References

- B. S 5400 Part 2 (1978). Steel, Concrete and Composite bridge. London: British Standard Institute.
- B. S 8110 Part 1 (1997). Structural Use of Concrete. London.British Standard Institute.
- Chow, V. T. (2007). Hydrology Determination Of Waterways Areas For The Design Of Drainage Structures In Small Drainage Basins. Illinois : University of Illinois at Urbana-Champaign Library Large-scale Digitization Project Pg 18
- D.E. Metzler & H. Rouse, D. E. (1959). *Hydraulics of Box Culverts*. Iowa: Iowa Institute of Hydraulic Research in co-operation with the Iowa State Highway Commission and the U.S. Department of Commerce, Bureau of Public Roads.
- Dun . J. (1906). Dun Waterway Table. Santa Fe System.
- Federal Ministry of Works. (2006). Highway Manual Part 1. Abuja.
- Gillespie. (1853). A Manual of the Principles and Practices of Roadmaking .
- Hibbeler R. C (2012). *Structural Analysis*. Upper Saddle River, New Jersey 07458: Pearson Prentice. Hall Pearson Education, Inc.
- Mosley W. H & Bungey J.H(1990). *Reinfoced Concrete Design*. London: Macmillan Education Ltd. Houndmills, Basingstoke, Hampshire RG21 2XS.
- Oyenuga V.O (2001). Simplified Reinforced Concrete Design. Asros Limited.

Rajput R.K (2008). Strength of Materials. Ramnagar, New Delhi: S.Chand & Company Ltd.

- Simpson D. (2014). In Defence of the Rational Method. *3rd National Conference on Urban Water Management* (pp. 13-17). Brisbane: City Projects Office, Brisbane City Council, GPO Box 2567, Brisbane, Qld 4001
- Steedman, C. E. (1999). *Reinforced Concrete Designer's Handbook*. 11 New Fetter Lane, London EC4P 4EE: E & FN Spon, Taylor & Francis Group.