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Abstract 

This study was designed to investigate the spin – relaxation time of AlxIn1-xSb compounds. 

Spintronic materials (SM) allowed for the exploitation of electron spin to enhance electronic and 

have huge potential for technological applications. Information is encoded in the spin state of 

electron of spintronic materials and transferred with the electrons. However, the information is 

affected by the fact that electron states relaxation is usually characterized by Band – Gap (BG) 

and Spin – Orbit Splitting (SOS). It thus becomes imperative to understand and have control over 

spin relaxation in order to retain the information within a required operation period. Equilibrium 

lattice constants of AlxIn1-xSb compounds were determined from Quantum Mechanics (MQ) 

approach and then compared with the literature results. The results obtained from conduction 

band effective masses and bulk moduli for the compounds that exhibit SOS were used to 

determine the spin – relaxation times utilizing D’ Yakonov – Perel mechanism.   The results 

showed that the equilibrium lattice constants were 6.3 and 6.1 Å for InSb and AlSb respectively 

which agreed with literature results of 6.4, 6.1 Å for InSb  and AlSb  respectively. The SOS of 

0.67eV was obtained for all concentrations. Thus, the information encoding ability of AlxIn1-xSb 

decreases with increase in concentration of Aluminum (Al). Moreover, the spin – relaxation time 

of AlxIn1-xSb decreases with increase in Al concentration which makes it a useful material for 

spintronic applications.  

Keywords: Spintronics, D' Yakonov-Perel mechanism, Pseudo-potential, Spin-orbit splitting, Lattice 

constant. 
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INTRODUCTION  

The goal of electronic structure studies is to be able to calculate physical properties which 

agree favorably well with experimental data. If this is achieved, confidence is restored in the 

calculation methods. This confidence allows an identification and detailed interpretation of the 

microscopic bases of observed phenomena, followed by the prediction of new and unexpected 

properties and materials. In a situation whereby the work has not been done experimentally, the 

theoretical prediction can be a starting point for the experimental take–off, i.e. theoretical 

calculation can be the starting point for the journey to the real expectation. 

The growing demand for new technologies stimulates an active research interest in band-

gap engineering and phonon dispersion relation of semiconductors. Group III-V materials were 

chosen because some of these materials crystallize in face-centered cubic structure with direct 

band-gap which especially constitute the building blocks of emitters in cellular, satellite and fiber 

glass communication (Lachebi, 2008).  Band-gap engineering is a procedure in which quantum 

physics can be used to simulate the application-based properties of materials. This can be 

achieved by changing specific attributes such as atomic composition, concentration of impurity 

or dopant of the materials until the desired properties are obtained, which may give rise to new 

materials. In computational material sciences, computer programmers make use of variables, 

experimentally determined parameters as input.  

However, nowadays, simulations of solids and molecules are performed using first-

principles. One incentive for studies in the field of condensed matter was and still is the study 

and development of materials for the next generation of computers (Remediakis and Efthmios, 

1999). Most electronic devices employed circuits which express data and other information in 

the form of binary digits. As technology advances, the size of individual semiconductor material 

approaches the dimension of an atom, thus marking the end of the silicon road map (Sarma and 

Fabian, 1999). This enhances the multifunctionality of devices, i.e., a device carrying out 

processing and data storage on the same chip.  
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LITERATURE REVIEW 

Previous studies had established that in a many-electron system, the potential is more 

complicated because of electron-electron interactions(𝑉𝑒−𝑒) electron-nucleus interaction(𝑉𝑒−𝑛) 

and perhaps nucleus-nucleus interactions. Thus, the Schrödinger equation for many-electron 

system is 

(
−ℏ2

2𝑛
∇2 + (𝑉𝑒−𝑒(𝑟) + 𝑉𝑒−𝑛(𝑟) + 𝑉𝑛−𝑛(𝑟))) 𝜓(𝑟) = 𝐸𝜓(𝑟)   (1) 

If equation (1) is solved, parameters useful for electronic and optical technology can be obtained 

with computational technique (Alexander et al., 2008). 

Born-Oppenheimer approximation for system of electrons of mass m, nuclei of mass M at 

positions r and R, respectively, the non-relativistic Hamiltonian 𝐻̂ is written as: 

𝐻 = ∑
𝑝𝑖

2

2𝑚
𝑖

− ∑
𝑍𝑗𝑒2

4𝜋 ∈ |𝑟𝑖 − 𝑅𝑗|
𝑗,𝑖

+
1

2
∑

𝑒2

4𝜋 ∈ |𝑟𝑖 − 𝑟𝑖′|

′

𝑖,𝑖′
+ ∑

𝑝
𝑗
2

2𝑀𝑗
𝑗

+
1

2
∑

𝑍𝑖𝑍𝑗′𝑒
2

4𝜋 ∈ |𝑅𝑗 − 𝑅𝑗′|

′

𝑗,𝑗′
                                    (2) 

In Born-Oppenheimer approximation method, the heavy nuclei are regarded as frozen core 

because the nuclear motion is negligible relative to electronic motion. 

The description of the physical properties of interacting many-particle systems, density 

functional theory, (DFT) is one of the problems that require solution of a Schrödinger equation 

with 3N spatial variables and N-spin variables (for electrons). N is the number of particles in the 

system. For atoms, N ranges from one to 100-electrons and often more than 100electrons.  In a 

solid, N~1023(Leenwen, 1994; Kohn, 1999). Therefore it is clear that this problem cannot be 

solved without some approximation along the line, somewhere. 

The main objective of DFT is to understand the properties of many-body particle systems(Gonze, 

2007) and calculate several measurable quantities, like bonding energy, polarizability, 

conductivity, etc. rather than the wave function itself(Harrison, 1980).  
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Mechanisms of spin relaxation 

Elliott-Yafet Mechanism 

This mechanism is suitable for elemental semiconductor with symmetry invasion, i. e., 

and centrosymmetric. 

D’ Yakonov-Perel Mechanism 

D’ Yakonov-Perel mechanism is good for calculation of spin-orbit splitting of the 

conduction band in non-centrosymmetric semiconductors like GaAs (but not Si or Ge, which are 

centrosymmetric).For bulk semiconductors, this splitting was first pointed out by Dresselhaus 

(Restrepo and Windl, 2012). In contrast to the Elliott-Yafet mechanism,the spin rotates not 

during, but between the collisions 

Bir–Aronov-Pikus Mechanism 

Bir–Aronov-Pikus mechanism is a mechanism of spin relaxation of non-equilibrium 

electrons in p-type semiconductors due to the exchange interaction between the electron and hole 

spins (or, expressing it otherwise, exchange interaction between an electron in the conduction 

band and all the electrons in the valence band (Sarma and Fabian, 1999). 

Spin-Relaxation Time 

Spin-relaxation and spin-dephasing are processes which lead to spin-equilibrium by 

bringing an unbalanced population of spin states into equilibrium.  

Most of the binary and ternary compounds found in groups (III-V) and groups (II-VI) 

semiconductors lack inversion symmetry; momentum states of the spin up and spin down 

electrons are not degenerate, i.e.,𝐸𝑘↑ ≠ 𝐸𝑘↓. Inversion symmetry is broken due to the presence of 

two distinct atoms in the Bravais lattice. 

 For inversion asymmetry systems, D’ Yakonov-Perel mechanism was found suitable for spin-

relaxation time calculation. 

The Elliott-Yafet relation gives an order-of-magnitude estimate of spin-relaxation time, 𝜏𝑠 by 

relating it to the shift ∆𝑔 of the electronic g-factor from the free electron value𝑔𝑜 = 2.003 as; 
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1

𝜏𝑠
≈

(∆𝑔)2

𝜏𝑝
                                                                                            (3) 

Where 𝜏𝑝 is the momentum relaxation time and for semiconductors with inversion symmetry,  

1

𝜏𝑠
= 𝐴(

∆𝑠𝑜

𝐸𝑔 + ∆𝑠𝑜
)2 (

𝐸𝑘

𝐸𝑔
)

2
1

𝜏𝑝
                                                    (4) 

Using equation (3) in (4),  

1

𝜏𝑠
= 𝐴(

∆𝑠𝑜

𝐸𝑔 + ∆𝑠𝑜
)2 (

𝐸𝑘

𝐸𝑔
)

2
1

𝜏𝑠(∆𝑔)2
                                                (5) 

𝐸𝑔is the energy gap  and ∆𝑠𝑜 is the spin-orbit splitting of the valence band and the numerical 

factor A is in the order of unity. D’ yakonov-Perel mechanism is mostly used for a 

semiconductor that lacks inversion symmetry such as binary and ternary compounds. Spin-

relaxation time can be calculated using (Restrepo and Windl, 2012); 

1

𝜏𝑠(𝐸𝑘)
=

32

105
𝛾3

−1𝜏𝑝(𝐸𝑘)𝛼2
𝐸𝑘

3

ℏ2𝐸𝑔
                                                               (6) 

Where 𝛼 determines the strength of the spin-orbit interaction. Lamour frequency vector 𝜔(𝑘) =

𝛼ℏ2(2𝑚𝑐
3𝐸𝑔)−

1

2                                                                                                  (7) 

Expressions for 𝛼 and 𝜏𝑝can be obtained in eqs. (3 and 6). Thus equation (7) becomes; 

1

𝜏𝑠(𝐸𝑘)
=

32

105
𝛾3

−1(∆𝑔)2𝜏𝑠(𝐸𝑘) (
𝜔(𝑘)

ℏ2(2𝑚𝑐
3𝐸𝑔)−1/2

)

2
𝐸𝑘

3

ℏ2𝐸𝑔
                          (8) 

Equation (8) describes spin-orbit splitting (spin-dephasing) in bulk III-V semiconductors. 

Phonon frequency, 𝜔(𝑘) can be obtained from phonon dispersion relation while energy gap, 𝐸𝑔 

obtained from the band structure of the semiconductor material. 

 For impurity scattering, 𝛾3 = 6;  for acoustic phonons, 𝛾3 = 1;  and for optical polar phonons, 

𝛾3 = 41
6⁄ . 
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Neither electron-phonon nor phonon dispersion relation for InAlSb ternary compounds could not 

be obtained due to incapability of the available software and constant power source to sustain the 

calculations. However relaxation time has been calculated using equation (Pil Hun and Kim, 

2001):  

1

𝜏𝑠
= 𝑄𝛼2

(𝑘𝐵𝑇)3

ℏ2𝐸𝑔
𝜏𝑝                                                          (9) 

When 𝐸𝑘 = 𝑘𝐵𝑇 and 𝑄 =
32

105
𝛾3

−1 for impurity scattering, eq. (8) is equivalent to eq. (9) and 

momentum-relaxation time,𝜏𝑝, is; 

𝜏𝑝 =  
8√𝜋

3

ℏℛ
3
2

𝐸1
2(𝑘𝐵𝑇)

3
2

(
𝑚0

𝑚𝑐
)

3
2

𝑎0
3𝑐𝑙                                         (9𝑎) 

𝑚𝑐
∗ =

𝑚𝑐

𝑚𝑜
=

1

1 +
2𝑃2

3𝑚𝑜
(

2
𝐸𝑔

+
1

𝐸𝑔 + ∆𝑠𝑜
)

                                   (9𝑏) 

Where, 𝑃 =
ℎ

𝑎𝑜
. 

 For impurity scattering, 𝛾3 = 6 and 
32

105
𝛾3

−1 = 1.83. But Q varies from 0.8 to 2.7. Thus Q value 

of 1.75 (
0.8+2.7

2
) will be used in this research.  

The longitudinal elastic constant is 

𝑐𝑙 =
3𝑐11 + 2𝑐12 + 3𝑐44

5
                                                   (10) 

The three independent elastic constants for cubic lattice are𝑐11, 𝑐12 𝑎𝑛𝑑 𝑐44. They are related to 

the isotropic bulk modulus B, resistance to shear deformation C, and shear modulus G, 

respectively (Mattesini et al., 2009) as 

𝐵 =
1

3
(𝑐11 + 2𝑐12)                                                             (10𝑎) 

𝐶 = 𝑐44,                                                                                  (10𝑏) 
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G=
1

2
(𝑐11 − 𝑐12)                                                                                                     (10𝑐) 

In an isotropic solid (Bardeen and Shockley, 1950; Marqueset al., 2003) 

𝑐44 =
1

2
(𝑐11 − 𝑐12).                                                                                                 (11). 

For a complete isotropic material,  

𝐶 = 𝐺                                                                                                     (12) 

 Also, Cauchy relations   

𝑐11 = 3𝑐12                                                                                                  (12𝑎) 

𝑐44 = 𝑐12                                                                                                        (12𝑏) 

are valid for isotropic cubic crystals (Bardekn and Shockley, 1950) 

Thus eq. (10a) becomes  

𝐵 =
1

3
(3𝑐12 + 2𝑐12)                                                                                (12𝑐) 

Thus, 𝑐12 =
3𝐵

5
 and  𝑐44 =

1

2
(𝑐11 −

𝑐11

3
) =

𝑐11

3
 

That is𝑐11 = 3𝑐44 = 3𝑐12 

Thus, 𝑐44 = 𝑐12 =
3𝐵

5
                                                                                            (12𝑑) 

𝑐11 =
9𝐵

5
                                                                                                           (12𝑒) 

Effective mass,𝑚𝑐
∗ =

𝑚𝑐

𝑚0
=  

1

1+
2𝑃2

3𝑚0
(

2

𝐸𝑔
+

1

𝐸𝑔+∆𝑠𝑜
)

                                                        (13) 

𝛼 =
4𝜂

√3 − 𝜂

𝑚𝑐

𝑚0
                                                                                        (13𝑎) 

𝜂 =
∆𝑠𝑜

𝐸𝑔 + ∆𝑠𝑜
                                                                                               (13𝑏) 
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Deformation potential energy,  𝐸1 = 𝑎0 [
𝐸𝑐(𝑎0+∆𝑎0)−𝐸𝑐(𝑎0−∆𝑎0)

2∆𝑎0
]                       (20) 

Room temperature: 𝑇 = 300𝐾, Ryberg constant, ℛ = 2.17991𝑥10−18𝐽, Plank’s constant, ℏ =

1.05459𝑥10−34𝐽𝑠 and Boltzmann constant, 𝑘𝐵 = 1.381𝑥10−23𝐽/𝐾.  

Electronic spin-relaxation times for silicon, diamond and graphite semiconductors were 

calculated using the Elliott-Yafet mechanism (Restrepo and W.Windl, 2012).  

 

Spin relaxation time of conduction electrons through the Elliot-Yafet,  D’yakonov-Perel and Bir-

Aronov-Pikus mechanisms were calculated theoretically for bulk GaAs, GaSb, InAs and InSb of 

both n- and p-type (Pil Hun and Kim, 2001). Also, theory of spin relaxation of conduction 

electrons was reported by Sarma and Fabian (1999). 

In electronics, integrated circuits operate by controlling the flow of carriers through the 

semiconductor by the applied electric field. These integrated circuits function as high signal 

processing devices but the processed information is lost immediately the power is switched off 

because the information is stored as charges in capacitors (Hong et al., 2004; Dederichs et al., 

2005). Nowadays, new devices generally called spintronics exploit the ability of conduction 

electrons in metals and semiconductors to carry spin-polarized current. Spintronics, or spin 

electronics, involves the study of active control and manipulation of spin degrees of freedom in 

solid-state systems. Spin transport differs from charge transport in that spin is a non-conserved 

quantity in solids due to spin-orbit and hyperfine coupling. 

 Another potentially significant property of spin is its long coherence or relaxation time, 

i.e. it tends to stay that way once it is created. One of the key obstacles to spintronic device 

operation and spin-based quantum information processing is the spin relaxation and spin 

dephasing (the decay of the longitudinal and transverse spin components) respectively. Spin 

relaxation and spin dephasing, in principle, also originate from the spin interactions; the 

fluctuation or in-homogeneity in spin interactions leading to spin relaxation and spin dephasing 

(Sarma and Fabian, 1999). 
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RESEARCH METHODOLOGY 

Quantum Espresso-5.4.0 version was downloaded and installed to process 𝐴𝑙𝑥In1−xSb 

ternary compounds. Experimental lattice constants and atomic masses of the binary compounds 

were obtained from electronic sources, journals and textbooks. The pseudo-potentials used were 

downloaded from the Quantum Espresso website. One of the objectives of this work is to assess 

the influence of pseudo-potentials on the studied properties. First-principles total energy 

calculations were performed within the frame work of Density Functional Theory (Giannozzi et 

al., 2009). Equilibrium lattice constants, 𝑎𝑜, bulk modulus 𝐵𝑜 and pressure derivatives,𝐵𝑜
′ , of the 

bulk modulus for each compound were calculated using the standard procedure by fitting total 

energy against volume to a Murnaghan’s equation of states (Marques et al., 2003). These stable 

parameters were inserted into the self-consistence field input codes as embedded in the Quantum 

Espresso software package for calculating the total energy and Fermi energy for the system. 

Since convergence with respect to energy cutoff is a property of pseudo potentials, it was 

carefully performed for each compound up to the energy difference of 10−3𝑅𝑦 for hard pseudo-

potentials.  

Results 

Due to the fact that energy-gap of InSb was the lowest, followed by that AlSb, Al was used as 

dopant in AlxIn1-xSb ternary compounds. Tables of results are follows: 

Table 1. Comparison of Energy-Gaps𝐸𝑔, lattice constants,𝑎𝑜, of InSb and AlSb binary 

compounds 

Compounds         Lattice Const 𝒂𝒐 (a.u) 

 

Energy gap 

(eV) 

 

InSb 

AlSb 

 

6.298 

6.111 

 

6.478810 

6.135510 

 

0.63 

1.25  

 

http://www.quantum/
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 10Papis-Polakowska, (2006) 

Table: 2. Calculated lattice constant,𝑎𝑜, bulk modulus, Bo and pressure derivatives 

𝐵0
1 for AlxIn1-xSb Ternary Compounds. 

Concentration, x 𝑎𝑜(a.u) Bo (GPa) 𝐵0
1 

0.00 

0.25 

0.50 

0.75 

1.00 

11.90 

11.80 

11.71 

11.62 

11.52 

210.50 

213.80 

216.80  

220.40 

222.20 

4.66  

4.25 

3.61 

4.93 

4.18 

 

Table: 3. Calculated Energy-Gap (𝐸𝑔), Spin-Orbit Splitting(∆𝑜)and Spin-relaxation time (sec) 

for AlxIn1-xSb using PAW-PP with SOC 

Concentration, x 𝐸𝑔 (eV) ∆𝑜 (eV) 𝜏𝑠 (sec) 

0.00 

0.25 

0.50 

0.75 

1.00 

0.17 

0.37 

0.80 

0.93 

1.00 

0.67 

0.67 

0.67 

0.67 

0.67 

0.11  

0.049 

0.029 

0.027 

0.025 
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Discussions 

Structural Parameters 

Lattice constants calculated for the AlxIn1-xSb ternary compounds decreased with increasing 

concentrations of Al. This was expected because lattice constant of InSb is greater than that of 

AlSb binary compounds. In AlxIn1-xSb, energy-gap increases with increasing concentration but, 

lattice constant decreases with increasing energy-gap in AlxIn1-xSb. Result revealed also that 

Spin-relaxation time calculated for AlxIn1-xSb ternary compound (with SOC) decreases with 

increasing Al concentration. Finally, optical frequency decreases in AlxIn1-xSb with increasing 

concentration from 0.25 to 0.75. 

 

 

 

L                       Г          Δ             Χ  Κ                                  Г  

Fig. 1. Band structure of Indium Antimonide (GGA) 
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L                            Г       Χ                        Κ                          Г   

 Fig. 1a. Al0.0In1.0Sb   

 

L                            Г       Χ                        Κ                          Г   

 Fig. 1b     Al0.25In0.75Sb   
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L                            Г       Χ                        Κ                       Г   

Fig. 1c.     Al0.5In0.5Sb   

 

L                              Г              Χ                                 Κ                       Г   

Fig. 1d.     Al0.75In0.25Sb   
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Conclusions 

In conclusion, spin relaxation times calculated for 𝐴𝑙𝑥𝐼𝑛1−𝑥𝑆𝑏 decreases with increasing 

concentration. Thus the shortest time for information transfer can be obtained at higher 

concentration of Al (Pil Hun and Kim, 2001).  

It can also be inferred that, modern electronic structure techniques such as Quantum Espresso 

can produce fine details, especially for phonon spectra of semiconductors. This gives further 

confidence in the predictive power of these techniques. 

The results equally showed that UV-wavelength range for the  𝐴𝑙𝑥𝐼𝑛1−𝑥𝑆𝑏 is 364.5–253.1 nm.  

 

 

 

 

  L                                Г                   Χ                               Κ                                    Г   

Fig.1e.     Al1.0In0.0Sb   
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