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Abstract. The combination of Shewhart X and S-control charts developed to control the process variability based on
the assumption that the underlying distribution of the quality characteristic is normal. The normality assumption is
often violated when the underlying distribution of the characteristic under consideration is skewed; therefore, the use
of the Shewhart X and S control charts on real-life data might lead to inaccurate estimation of control limits. The
robust methods of estimation of control chart statistics can be used in such situations. In this paper, the robust scale
estimator was used to estimate the mean, variance and median based on Marshall-Olkin Inverse log-logistic distribution.
Monte Carlo simulation study was conducted using Marshall-Olkin Inverse log-logistic distribution to determine the
performance of the proposed method in comparison with the Shewhart S and MAD methods. The proposed control
limits showed an improvement over the Shewhart and stocktickerMAD control charts for non-normal process.
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1. Introduction

The main objective of Statistical Process Control (SPC) is to monitor, improve process performance and
reduce variability. SPC Charts are vital tools for studying process variability and detecting quality improve-
ments or quality deteriorations. The major purpose of control chart is to detect the occurrence of assignable
and common causes so that the necessary remedial action(s) may be taken before a large number of non-
conforming products are manufactured (Chou et al. 2001). Shewhart control charts are based on the as-
sumption that quality measurements are independently and identically normally distributed. However, the
assumption of an independently and identically distributed normal population is invalid in many cases, espe-
cially encountered frequently in real-application. Therefore, if the quality characteristics under study are not
normally distributed, the traditional way of designing the control chart may reduce the ability that a control
chart detects the assignable causes (Chou et al. 2001). Specifying the control limits, which is a function of
mean and variance, is of utmost importance in designing a control chart. Improper estimation of the pro-
cess dispersion which results in narrower or wider limits can increase the probability of type I error or the
probability of type II error (Shahriari et al. 2009). Most of the standard control charts use a mathematical
model to estimate the mean, variance, median and other statistics from the available data to assess the action
lines. By doing this, it is assumed that the underlying distribution fits the symmetrical normal pattern. It is
best to make use of probability distribution that best fits the available data set, estimate the parameters of
the distribution and calculate various statistics, based on the underlying distribution, needed to construct the
control limits. This is the focus of this paper.

There are many robust control chart methods available in literature. Some of them are Rocke (1989, 1992)
who proposed trimmed Mean and Inter Quartile Range chart and Median and Range chart to control pro-
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cess mean. Schoonhoven et al. (2011) used Tatum estimator and trimean value based on quantiles. Wu et
al. (2002) considered the Median of the Absolute Deviation from the Median (MDM), the Average Ab-
solute Deviation from the Median (ADM) and the Median of the Average Absolute Deviation (MAD) as
alternatives for the sample standard deviation to investigate their effect on X̄ control chart performance.
Abu-Shawiesh (2009) used the Sample Median (MD) to estimate the process mean, µ, and MAD to esti-
mate the dispersion σ. Figueiredo and Gomes (2009) used Bootstrap based median, range, total median and
total range statistics to control process mean. Maddahi et al. (2011) presented a robust mean control chart
based on M-estimators in presence of outliers. Adekeye (2012), Adekeye and Azubuike (2012) used sample
mean with standard deviation estimated using MAD to construct control chart limits for non-normal process.
Schoonhoven and Does (2013) used trimean (TM) and Adaptive Trimmed Standard deviation (ATS) to con-
trol process. Sindhumol and Srinivasan (2015) introduced a dispersion chart based on MMLE. Sindhumol
et al. (2016a,b) developed control charts for location and dispersion based on trimmed mean and Modified
Trimmed Standard Deviation (MTSD). Wang et al. (2017) proposed control charts for monitoring the lower
Weibull percentiles under complete data and Type II censoring, Srinivasa Rao (2018) considered an exponen-
tiated half logistic distribution to develop an attribute control chart for time truncated life tests with known
or unknown shape parameter. Adewara and Aako (2018) derived the control limits of variable control charts
based on percentiles of exponentiated lomax distribution.

This paper presents robust location and dispersion charts based on Marshall-Olkin Inverse Log-logistic
Distribution. The proposed method is used to construct control limits and its performance is also compared
with existing control charts.

2. Marshall-Olkin inverse log-logistic distribution

Marshall-Olkin Inverse Log-logistic Distribution (MOILLD) is a two-parameter distribution derived by gen-
eralizing Inverse Log-logistic Distribution using the Marshall-Olkin G family of distribution.

The probability density function (pdf) of the Inverse Log-logistic (ILL) distribution as defined by Para and
Jan (2017) is giving by

f (x, γ) =
γ

xγ+1(1 + x−γ)2
, x > 0, γ > 0, (1)

its corresponding cumulative distribution function (cdf) is given by

F (x, γ) =
1

1 + x−γ
, x > 0, γ > 0, (2)

and the survival function is given by

F̄ (x, γ) =
x−γ

1 + x−γ
, x > 0, γ > 0, (3)

where γ is the shape parameter.
The survival function of Marshall-Olkin G family of distribution is given by

Ḡ(x) =
αF̄ (x)

1− ᾱF̄ (x)
, (4)

where α > 0, ᾱ = 1− α and −∞ < x <∞. The corresponding probability density function (pdf) is given
by

g(x) =
αf(x)(

1− ᾱF̄ (x)
)2 , (5)

where α > 0, ᾱ = 1− α and −∞ < x <∞.
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Marshall-Olkin Inverse Log-logistic Distribution (MOILLD) is derived by inserting Equation (3) in Equa-
tion (4) to get the survival function and Equations (1) and (3) in Equation (5) to get the corresponding density
function.

The survival function of MOILLD is given by

Ḡ (x) =
x−γ

(1 + x−γ)− (1− α)x−γ
.

Therefore,

Ḡ(x) =
αx−γ

1 + αx−γ
, x > 0, γ > 0, α > 0. (6)

The cumulative distribution function (cdf) is given by

G (x) = 1− Ḡ(x) = 1− αx−γ

1 + αx−γ

G (x) =
1

1 + αx−γ
, x > 0, γ > 0, α > 0. (7)

and the corresponding probability density function (pdf) of MOILLD is given by

g(x) =
αγ

xγ+1 (1 + αx−γ)2
, x > 0, γ > 0, α > 0. (8)

Figure 1 presents the pdf plot of MOILLD for different values of the parameters γ and α. It is evident that
the distribution of the Marshall-Olkin inverse Log-logistic random variable X is positively skewed and it is
unimodal. The skewness tends to zero as the parameters values increase simultaneously.
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Figure 1: Probability density plot of MOILLD

The argument for using the Marshall-Olkin Inverse Log-logistic model was borne out from the fact that:

http://www.srg-uniben.org/



Robust scale estimator-based control charts... 58

(1) The Marshall-Olkin Inverse Log-logistic distribution is simpler and efficient in modeling skewed
distribution. Other distributions characterized by three or more parameters may be complex.

(2) The quantile, mean, variance and mode of the Marshall-Olkin Inverse Log-logistic distribution are
very simple to handle.

It should be noted, that practitioners of control charts may not be experts in process control, thus, the
proposed simpler, but efficient control charts based on Marshall-Olkin Inverse Log-logistic distribution can
be used to monitor the stability and performance of skewed process data.

To use the estimates of the parameters of the MOILLD to construct control limits, we will determine the
mean, variance and quantile of the distribution which are the important estimates required in constructing
the control limits in a 3-sigma approach which we adopt in this work.

2.1 Moments

Let X be a random variable that has the MOILLD, then, the rth non-central moments was obtained to be

E(Xr) =

∫ ∞
0

xrg (x) dx =

∫ ∞
0

xr
αγ

xγ+1 (1 + αx−γ)2
dx

=

∫ ∞
0

αγ

xγ−r+1 (1 + αx−γ)2
dx

After simplification using Maple 17 software mathematics function,

E(Xr) = α
r

γ
πr

γ
csc(

π (γ − r)
γ

), r > 0, γ > 0, α > 0, (9)

where csc(.) is the cosecant function. From Equation (9), the first two moments about the origin for MOILLD
were obtained by substituting r =1 and r =2, respectively. Thus, the first moment which is the mean is

E(X) = α
1

γ
π

γ
csc(

π (γ − 1)

γ
), (10)

and the second moment is

E(X2) = 2α
2

γ
π

γ
csc(

π (γ − 2)

γ
). (11)

Using Equations (10) and (11), the variance of MOILLD is obtained to be

V ar(X) = E(X2)− [E(X)]2 = 2α
2

γ
π

γ
csc

(
π (γ − 2)

γ

)
−
(
α

1

γ
π

γ
csc

(
π (γ − 1)

γ

) )2

= α
2

γ
π

γ

(
2csc

(
π (γ − 2)

γ

)
− π

γ
csc2

(
π (γ − 1)

γ

) )
. (12)

2.2 Quantile and random number generation from MOILLD

The random numbers from MOILLD distribution are generated by solving the equation obtained on equating
the cumulative distribution function of the distribution to a number q. Let q be a uniform variate on the
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interval (0, 1), the random numbers from the MOILLD is given by:

xq =

[
1

α

(
1

q
−− 1

)]− 1

γ

. (13)

If q = 0.25, q = 0.5 and q = 0.75, the resulting solutions are the first quartile (Q1), median (Q2) and third
quartile (Q3) respectively. Hence, we have

Q1 = x0.25 =

(
3

α

)− 1

γ

, (14)

Q2 = x0.5 =

(
1

α

)− 1

γ

, (15)

Q3 = x0.75 =

(
5.3333

α

)− 1

γ

. (16)

2.3 Maximum likelihood estimation of MOILLD

Let X1, X2, X3, . . . , Xn be a random sample of size n from MOILLD, then the likelihood function is given
by

L(x/α, γ) =

n∏
i=1

αγ

xiγ+1 (1 + αxi−γ)2
;x > 0, γ > 0, α > 0. (17)

By taking logarithm of Equation (12), the log-likelihood function

l = logL(x/α, γ) = nlog(αγ)− (γ + 1)

n∑
i=1

log(xi)− 2

n∑
i=1

log(1 + αxi
−γ). (18)

To obtain the MLE’s of α and γ, differentiate the log-likelihood function in Equation (18) with respect to α
and γ. Thus, we have

∂l

∂α
=
n

α
−

2n
∑n

i=1 xi
−γ

1 + α
∑n

i=1 xi
−γ . (19)

and

∂l

∂γ
=

n

γ
− nln

(
n∑
i=1

xi

)
+

2nα
∑n

i=1 xi
−γln (

∑n
i=1 xi)

1 + α
∑n

i=1 xi
−γ . (20)

To find the estimate of α and γ, we set Equations (19) and (20) to zero. The two estimates were obtained
numerically by maximizing the log-likelihood function using the Newton-Raphson method.

3. Proposed X̄ and median absolute deviation (MAD) charts for MOILLD

Let Xij be an independent and identical random sample of size n taken over m subgroup, i = 1, 2, ..., n
and j = 1, 2, ..., m. If the underline distribution is normal, then an unbiased estimator of S is C4σ, where
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C4 =
(
2
n − 1

) 1

2

[
Γ(n2 )

Γ(n−1

2 )

]
and the standard deviation of S is σ

√
1− C2

4 . Therefore, the 3-sigma control

limits for S- chart is given by UCL = C4σ + 3σ
√

1− C2
4

CL = C4σ

LCL = C4σ − 3σ
√

1− C2
4

(21)

When the distribution is skewed and non-normal, the standard deviation can be estimated using the Median
Absolute Deviation (MAD) of the data to construct control limits for a skewed distribution. However, an
estimate may not give an accurate and precise value of the parameter required, and hence the validity of
the inference and conclusions drawn can be challenged. The proposed method uses MOILLD to model the
data, estimate the parameters of the distribution using maximum likelihood estimation and then estimate the
standard deviation using MAD based on the underlying distribution. The mean and median of the distribu-
tion were calculated using Equations (10) and (15), respectively. When MAD from MOILLD is used as an
estimate of variability, then

σ̂ = bn MAD∗ (22)

where MAD∗ = 1
m

∑m
j=1MADj is the median absolute deviation for MOILLD and bn is a function of the

sample size n.

MADj = Median |Xij − MD| . (23)

where MD = x0.5 =
(
1
α

)− 1

γ from Equation (15). Thus, the control limits and the central line for the
Shewhart X̄ and MAD charts are given as follows;

The MAD - control chart limits are 
UCLs = B4bnMAD∗

CLs = bnMAD∗

LCLs = B3bnMAD∗
(24)

and the corresponding control limits for the X chart when the sigma is unknown are
UCL = µ+ 3 bnMAD∗

√
n

UCL = µ

LCL = µ− 3 bnMAD∗
√
n

(25)

where µ = E (X) = α
1

γ π
γ csc(π(γ−1)γ ) as given in Equation (10).

Let A6 = 3 bn√
n

, then Equation (25) will be reduced to:

UCL = µ+A6MAD∗

UCL = µ

LCL = µ−A6MAD∗
(26)

The value of the control chart constants required for the calculation of the proposed control limits in Equa-
tions (24) and (26) can be found in Adekeye et al. (2012). Also, the value of the constants B3, B4, and C4

can be found in any standard statistical quality control textbook (Montgomery, 2012).

3.1 Performance evaluation

This paper employed Control Limit Interval (CLI) and Average Run Length (ARL) to evaluate the perfor-
mance of the control charts. The CLI is the difference between the control limits value. Therefore, the CLI
for the S-control charts will be determined using the expression:
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CLIs =
[
6
√

1 − C4
2
]
bnMAD∗ (27)

and the CLI for the textitX control chart will be given by the expression:

CLIs =
6bn√
n
MAD∗ (28)

A control chart is declared to be superior if its Control Limit Interval is the smallest out of all the control
charts under consideration.

The Average Run Length (ARL) is the average number of points that must be plotted before a point
showed out-of-control signal. It is defined as the inverse of the probability that any point exceeds the control
limits. The ARL of Shewhart control chart in the in-control process state can be varied considerably as the
standard deviation of the distribution of run length is high (Sindhumol and Srinivasan, 2015). When the
process is in-control, the in-control ARL of Shewhart control chart is expected to be close to 370.4, while
the out-of-control ARL should be small.

4. Results

4.1 Simulation study

Two data sets were simulated and arranged in 3, 5 and 10 sample sizes with 30 subgroups using the
Marshall-Olkin Inverse Log-logistic distribution with parameters α = 3.5, γ = 2.8 and α = 4, γ = 3.5. The
X̄ and MAD∗ control limits for different sample sizes with 30 subgroups were computed. The proposed
control limits in Equations (24) and (26) were computed together with control limit interval and average run
length to evaluate the performance. The results are presented in Tables 1 and 2 alongside with the X̄ and S
and X̄ and MAD for mean and dispersion charts respectively.

Table 1: Control Limits Interval (CLI) and Average Run Length (ARL) for mean charts

Parameter Method n=3 n=5 n=10 n=20
CLI ARL CLI ARL CLI ARL CLI ARL

α = 3.5 X̄&S 2.464 15 1.807 10 1.238 5 0.8591 3.3333
γ = 2.8 X̄&MAD 2.513 15 1.570 10 1.001 5 0.6783 3.0000

X̄&MAD∗ 3.0360 23.971 1.8972 7.7194 1.2091 3.0037 0.8196 1.9254
α = 4.0 X̄&S 2.149 30 1.576 10 1.080 5 0.7493 3.7500
γ = 3.5 X̄&MAD 2.241 30 1.401 10 0.893 5 0.6051 3.0000

X̄&MAD∗ 2.6967 28.0287 1.6851 8.3012 1.0740 3.2023 0.7280 2.0140
α = 4.5 X̄&S 2.0325 30 1.4905 10 1.0215 5 0.7088 3.7500
γ = 5.8 X̄&MAD 2.1539 ∞ 1.3459 10 0.8578 5 0.5815 3.0000

X̄&MAD∗ 2.5828 35.162 1.6139 9.5286 1.0286 3.5340 0.6972 2.1484

4.2 Real life application

The data on asthma patients’ length of stay (in days) on admission retrieved from the records of Asthmatic
in-patients of Ogun State Hospital, Ijebu-Ode was used to assess the performance of the charts. The asthma
patients’ data is an individual observation data. To use Shewhart charts for analyzing individual observation
data, one natural idea is to “create” grouped data, by grouping observations collected at consecutive time
points (Qiu, 2014). 185 patients’ data were retrieved and grouped into 37 subgroups of 5 units as presented
in Table 3.

The Jarque Bera test for normality was obtained to be 39.908 with a p-value of 2.2e-16. It implies that the
data is not normally distributed. Furthermore, the skewness coefficient was computed to be 1.1257; hence,
the data is a positively skewed data.
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Table 2: Control Limits Interval (CLI) and Average Run Length (ARL) for dispersion charts

Parameter Method n=3 n=5 n=10 n=20
CLI ARL CLI ARL CLI ARL CLI ARL

α = 3.5 S 1.622 ∞ 1.320 15 0.905 5 0.6191 1.8750
γ = 2.8 MAD 1.863 ∞ 1.222 30 0.755 2 0.4954 1.6667

MAD∗ 2.2508 6.6591 1.477 1.9817 0.9126 1.2810 0.5987 1.1292
α = 4.0 S 1.415 ∞ 1.151 15 0.789 7.5 0.5399 2.1429
γ = 3.5 MAD 1.662 ∞ 1.090 30 0.674 2 0.4420 1.6667

MAD∗ 1.9992 5.1242 1.3119 1.5361 0.8106 1.1250 0.5317 1.0511
α = 4.5 S 1.3384 ∞ 1.0887 30 0.7463 7.5 0.5107 2.3077
γ = 5.8 MAD 1.5968 ∞ 1.0478 30 0.6474 2.143 0.4247 1.6667

MAD∗ 1.9147 3.8371 1.2565 1.2576 0.7763 1.0465 0.5092 1.0163

Table 3: Asthma patients’ length of stay on admission

X1 X2 X3 X4 X5
1 2 66 23 7 27
2 1 30 42 7 55
3 12 23 24 7 66
4 10 22 52 2 44
5 32 2 28 22 12
6 3 17 37 7 2
7 4 2 49 6 1
8 56 3 3 33 32
9 63 13 4 7 43
10 51 23 3 7 2
11 3 22 6 7 65
12 34 56 4 21 1
13 42 4 45 2 21
14 65 7 2 2 3
15 55 4 6 3 4
16 66 8 6 1 5
17 6 12 7 45 42
18 1 4 9 33 61
19 3 8 29 38 6
20 1 9 22 33 21
21 2 2 2 42 41
22 5 48 2 45 23
23 7 7 3 3 32
24 72 7 7 45 71
25 23 55 3 65 22
26 21 3 4 5 33
27 45 67 5 6 52
28 44 16 15 12 3
29 42 6 7 8 4
30 42 3 7 21 5
31 10 12 7 42 11
32 12 8 7 33 65
33 2 5 6 5 9
34 1 4 6 4 1
35 1 8 87 4 10
36 4 43 7 6 13
37 4 1 7 7 10
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Table 4: Control Limits Interval (CLI) and Average Run Length (ARL) for mean and dispersion charts

X̄ Charts S Charts
CLI ARL CLI ARL

[SH] 56.5136 ∞ 41.2787 ∞
[MAD] 41.8826 ∞ 32.6070 7.4
[MAD*] 46.1786 3.0833 35.9516 18.5

S−L

S−U

CL

MAD_L

MAD_U

MAD*_L

MAD*_U

−25

0

25

50

0 10 20 30
Number of sample

Me
an

Model 1

S−L

S_U

CL

MAD_L

MAD_U

MAD*_L

MAD*_U

−20

0

20

40

0 10 20 30
Number of sample

Ra
ng

e

Model 2

Figure 2: Mean and S- charts for asthma patients’ length of stay using Shewhart S-, MAD and MAD* control
charts

5. Discussion of results

The evaluation parameters, the CLI and the ARL used in this study revealed the following

(1) The CLI for mean chart of the proposed MAD∗ is wider compare to the other methods for n= 3 and
5, and shorter than that of X̄/S chart for n=10 and 20.

(2) The CLI for dispersion chart of the proposed MAD∗ is wider compare to the other methods for n=
3, 5 and 10, and shorter than that of S-chart for n=20.

(3) The ARL for the mean chart of the proposed MAD∗ is small compare to the other methods for n=5,
10 and 20. X̄/S and X̄/MAD have the same ARL for n=3, 5 and 10.

(4) The ARL for the dispersion chart of the proposed MAD∗ is small compare to the other methods for
n=3, 5, 10 and 20. X̄/S and X̄/MAD charts have the same ARL for n=3. The ARL of X̄/S chart
is less than that of X̄/MAD chart for n=5 while the ARL of X̄/MAD chart is less than that of X̄/S
chart for n= 10 and 20.

(5) The charts behave the same way with varying parameters.
(6) As the number of sample is increasing, both the CLI and the ARL are decreasing.
(7) The CLI of X̄/MAD chart is less than that of other methods. The ARL of the proposed mean chart

is less than that of other methods. Figure 1 shows the placement of the control limits of the three
methods for both mean and dispersion charts. Hence, the results of the real data application show
that the proposed X̄/MAD* charts performed better than the other methods.

6. Conclusion

This research work has been able to evaluate Robust Scale Estimator Based Control Charts for MOILLD for
monitoring process data when the standard value of sigma is not given and Median Absolute Deviation for
MOILLD (MAD∗) is used as the estimate. The ARL values in Table 2 and 3 clearly showed that control limits
of MAD for MOILLD are more accurate compared to the earlier control limits for all the distributional data
sets under consideration to detect out-of-control. The CLI values indicate X̄/S and X̄/MAD charts have a
tight control limits compare to the proposed MAD∗ chart which could raise a false alarm when there is none.
The results of the real data application show that the proposed X̄/MAD* performed better than the other
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methods. This indicates that the median absolute deviation for MOILLD is more accurate and more suitable
to construct control limits than the standard deviation and MAD proposed by Adekeye et al. (2012) for
highly skewed data. Therefore, it is recommended that the proposed control limits for mean and dispersion
charts be used when monitoring past/skewed data when there is no specified standard value for sigma. Thus,
control chart users are advised to first investigate the distribution of the process data (real-life data) before
the use of a control chart.
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Appendix

R code
Nsim=30; R=3
a1=4.5; b1=5.8;
set.seed(??)
x=replicate(R,(((1/runif(Nsim))-1)/b1)∧(-1/a1))
x=as.data.frame(x,row.names = NULL)
####### for S
SD=apply(x,1,sd) #median absolute deviation
Xbar1=apply(x,1,mean)
Xbarbar=mean(Xbar1)
bn=1.495; B3=0; B4=2.568; A3=1.95; A6=2.5893
#X-bar chart
UCL=Xbarbar+A3*mean(SD); CL=Xbarbar; LCL=Xbarbar-A3*mean(SD)
CLI1=UCL-LCL
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#S chart
UCL s=B4*mean(SD); CL s=mean(SD); LCL s=B3*mean(SD)
CLI s1=UCL s-LCL s
#ARL
cval <-(LCL < Xbar1 & Xbar1< UCL)
lnside<- sum(cval)/30
ARL1=1/(1-lnside)
cvals <-(LCL s < SD & SD< UCL s)
lnside<- sum(cvals)/30
ARLs1=1/(1-lnside)
##### for MAD
MAD=apply(x,1,mad) #median absolute deviation
Xbar1=apply(x,1,mean)
Xbarbar=mean(Xbar1)
#X-bar chart
UCL=Xbarbar+A6*mean(MAD); CL=Xbarbar; LCL=Xbarbar-A6*mean(MAD)
CLI2=UCL-LCL
#MAD chart
UCL s=B4*bn*mean(MAD); CL s=bn*mean(MAD); LCL s=B3*bn*mean(MAD)
CLI s2=UCL s-LCL s
cval <-(LCL < Xbar1 & Xbar1< UCL)
lnside<- sum(cval)/30
ARL2=1/(1-lnside)
cvals <-(LCL s < MAD & MAD< UCL s)
lnside<- sum(cvals)/30
ARLs2=1/(1-lnside)
##### MAD for MOILLD
lik<-function(par){
a<-par[1]; g<-par[2]
n*log(a)+n*log(g)- (g+1)*sum(log(x))-2*sum(log(1+a*x∧(-g)))
}
d<- maxLik::maxLik(lik,start=c(1,1))
a=d$estimate[[1]]; g=d$estimate[[2]]
Xbar=(a∧(1/g)*(3.142/g))/sin(pi*(g-1)/g)
MD=a∧(1/g)
y=abs(x-MD)
MAD=apply(y,1,median)
#X-bar chart
UCL=Xbar+A6*mean(MAD); CL=Xbar; LCL=Xbar-A6*mean(MAD)
CLI3=UCL-LCL
#MAD* chart
UCL s=B4*bn*mean(MAD); CL s=bn*mean(MAD); LCL s=B3*bn*mean(MAD)
CLI s3=UCL s-LCL s
G<- function(x,a,g) {
1/(1+ a*x∧(-g) ) }
b=G(UCL s,a,g)-G(LCL s,a,g)
ARLs3=1/(1-b)
b=G(UCL,a,g)-G(max(0,LCL),a,g)
ARL3=1/(1-b)
c1=rbind(CLI1,CLI2,CLI3)
c2=rbind(CLI s1,CLI s2,CLI s3)
A1=cbind(c1,c2)
a1=rbind(ARL1,ARL2,ARL3)
a2=rbind(ARLs1,ARLs2,ARLs3)
A=cbind(a1,a2)
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