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Abstract—This research work was set to examine the 
activities of the Nigerian Stock Exchange using the all-share 
index monthly data published between the year 2000 and 
2015. Based on the plotted ACF graph of the original series, it 
was observed that the series was non-stationary and also 
exhibited some elements of seasonality which necessitated the 
series to be differenced to attain stationarity as well as 
reducing the seasonal effect. This deseasonalised stationary 
series data was modelled in order to determine the stability of 
the parameter estimation. The plots of the ordinary and 
seasonal differenced series autocorrelation and partial 
autocorrelation functions suggested some models for selection 
but the Akaike and Bayesian Information Criterion was used 
to select the model that really provided the best fit for the 
series. From the family of the seasonal models generated 
using R-Console, seasonal ARIMA (2, 1, 1)×(0, 1, 1)12 model 
was found to be the most adequate model that really captured 
the dependence in the series and that also tracked the 
seasonal effect. The adequacy of the chosen model was 
subsequently checked using both the Shapiro Wilk and 
Ljung-Box test approaches. The Shapiro Wilk Test for 
Normality of residuals while Ljung-Box test for dependence 
in residuals of the fitted model. Method of maximum 
likelihood was used to determine the estimates of the 
parameters of the identified models and each parameter was 
statistically tested for significance. The model was used for a 
short term forecast (2016-2018). 

Keyword - Deseasonalised, Autocorrelation function, 
Partial autocorrelation function, Stationarity, All-share 
index. 

I. INTRODUCTION 

The Autoregressive (AR), Moving Average (MA) and the 
mixed autoregressive moving average (ARMA) models are 
often very useful in modeling most time series data. 
However, they have the assumption of homoscedasticity 
(or equal variance) for the errors. A time series that 
exhibits some elements of seasonality can only be modeled 

using seasonal models such as Seasonal AR, Seasonal MA, 
Seasonal ARMA and Seasonal ARIMA [1] 

A Seasonal ARIMA model contains seasonal part and 
non-seasonal part in which both parts have the same 
structure. It may have an AR factor, an MA factor, and/or 
an order of differencing. In the seasonal part of the model, 
all of these factors operate across multiples of lags (the 
number of periods in a season). If the series has a long and 
consistent pattern, then one should consider using an order 
of seasonal differencing. It is statistically good not to use 
more than one order of seasonal differencing or more than 
two orders of total differencing (seasonal and non-
seasonal). If the autocorrelation at the seasonal period is 
positive, one should consider a seasonal AR term to the 
model but if the autocorrelation at the seasonal period is 
negative, consider adding a Seasonal MA term to the 
model. We cannot mix Seasonal AR and Seasonal MA 
terms in the same model and one should always avoid using 
more than one of either kind. Usually, the most commonly 
used seasonal model is the seasonal ARIMA (0, 1, 1) x (0, 
1, 1)12 model, i.e. an MA (1) x SMA (1) model with both a 
seasonal and non-seasonal difference. In a rare case, a 
seasonal ARIMA (0, 1, 2) x (0, 1, 1)12 might be more 
adequate depending on the nature of the data. When a 
seasonal ARIMA model is fitted to log data, it is capable of 
tracking a multiplicative seasonal pattern [2]. [3] Introduced 
a SARIMA model as an adaptation of an autoregressive 
integrated moving average (ARIMA) model, which they 
earlier proposed, to specifically explain the variation of 
seasonal time series. The best forecasts in [3] as judged by 
the root mean-square error (RMSE) and other criteria were 
obtained with the family of periodic autoregressive models. 
It was found that a periodic auto-regression which was 
determined by choosing ��as small as possible to achieve 
an adequate fit gave the best model forecasts. This was 
accomplished by initially determining ��based on a plot of 
the periodic partial autocorrelation function and then 
checking the adequacy of the fitted model. This approach is 
thus a natural extension of that of Box and Jenkins (1976). 
On the other hand, a subset periodic auto regression 
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approach was found to produce comparatively very poor 
forecasts. 

In this approach, for each period, all possible auto 
regressions with some parameters constrained to zero and 
with ��=12 were examined (212 possibilities) and the best 
model was selected [4,5]. In the work of [6], the model 
fitted in the case of Domestic Inflation Rate and Exchange 
Rate were ARIMA (1, 1, 0) and ARIMA (1, 1, 1) 
respectively which were used to make inflation and 
exchange rates forecasts and the validity of the model was 
tested.  

In the work of [7], on application of SARIMA and 
Exponential Smoothing in Urban Freeway Traffic Flow 
Prediction, the application of time series models to the 
single interval traffic flow forecasting problem of urban 
freeway was addressed. Seasonal Time Series approaches 
have not been used in previous forecasting research. 
However, time series of traffic flow data are characterized 
by definite periodic cycles. Seasonal ARIMA and Winters 
Exponential Smoothing models were developed and tested 
on the data sets belonging to two sites.  

A direct comparison with [8] results showed that 
ARIMA (2, 0, 1) (0, 1, 1) at a lag of 96 (daily period) and 
SARIMA (1, 0, 1)x(0, 1, 1)12 at a lag of 96 (daily period) 
were the best fit models for the Telegraph Road and 
Wilson Bridge Sites. The single step forecasting results 
indicate that SARIMA out-perform Neural network and 
historical average models as reported by [8]. [9] fitted a 
seasonal ARMA model using data that consisted of thirty 
mean monthly river flows for periods between 37 and 64 
years. Various models and model selection procedures 
were used to calibrate a model to each data set omitting the 
last three years of data.  

The one step forecasts ahead were then compared for 
the last three years (36 values) of the data. Modeling of 
Nigerian Naira foreign exchange rates with other 
currencies has also engaged the attention of many 
researchers, a few of whom are [10]. [11], [13] etc. Many 
economic and financial time series are known to exhibit 
some level of seasonality in their behavior. Foreign 
exchange rates are among such series, their observed 
volatility notwithstanding. For instance, [11] has shown 
that monthly Nigerian Naira-US Dollar exchange rates are 
seasonal with period 12 months. He fitted an (0, 1, 1)x(1, 
1, 1)12 SARIMA model to it and on this basis forecasted 
the 2012 values. [12] also fitted another (0, 1, 1)x(1, 1, 
1)12 SARIMA model to the monthly Naira-Euro exchange 
rates. A few other authors who have written extensively on 
the theoretical properties as well as on the practical 
applications of SARIMA models, highlighting their 
relative benefits are [13], [14], [15], [16], [17], [18], [19] 
and [20]. 

This study shall contribute significantly to the body of 
knowledge and the development of financial time series 
study in particular; as a well diagnosed SARIMA model 
that can be be fit into the all-share index series of the 
Nigerian Stock Exchange in order to actualize reasonable 
forecast. 

II. MATERIALS AND METHODS 

The data for this research comprises of the all-share index 
of the Nigerian Stock Exchange (NSE) on monthly basis 
for the periods of sixteen years (2000-2015). 
The time series SARIMA methodology adopted shall be 
discussed and analyzed. 

  Seasonal Models 
Seasonal movement is usually due to the recurring events 
which takes place annually or quarterly as the case may be. 
Seasonal models have pronounced regular ACF and PACF 
patterns with a periodicity equal to the order of seasonality. 
If the seasonality is annual, the ACF spikes are heightened 
at seasonal lags over and above the regular non-seasonal 
variation once per year. If the seasonality is quarterly, there 
will be prominent ACF spikes four times per year. 

 Seasonal Autoregressive (SAR) Model 
Seasonal Autoregressive model contains autoregressive 
parameters at seasonal lags. The time sequence plot of 
ACF or PACF can be used as a primary instrument for 
identifying seasonal autoregressive model.  

Seasonal autoregressive models is given as 
�� = Φ����� + ��                                                 (1) 

where |Φ| < 1 and ��is independent of ����, ����, … It is 
obvious that |Φ| < 1ensures stationarity.  
Generally, a seasonal AR (P) model and a seasonal 
period’s s is given as: 

�� = Φ����� + Φ������ + ⋯ + Φ������ + �� (2) 

It is required that ��is independent of ����, ����,… and, 
for stationarity, that the roots of Φ(x) = 0 be greater than 1 
in absolute value. 

 Seasonal Moving Average (SMA) Model 
A seasonal moving average model of order Q with 
seasonal period s is given as: 
�� =  �� + Θ����� − Θ������ − Θ������ − ⋯ −
Θ������ (3) 

 Seasonal Autoregressive Integrated Moving 
Average (SARIMA) Model 

An important tool in modeling non-stationary seasonal 
processes is the seasonal difference. The seasonal 
difference of period s for the series [��] is denoted by 
∇��� and is defined as: 

                         ∇��� = �� − ����                         (4) 
For a series of length n, the seasonal difference series will 
be of length n-s; that is, s data values are lost due to 
seasonal differencing. 
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In a non-stationary seasonal model, a process �� is 
said to be a multiplicative seasonal ARIMA model with 
non-seasonal (regular) orders p, d and q, seasonal orders P, 
D and Q and seasonal period s if the differenced series: 

                                  �� = ∇�∇�
���                      (5) 

satisfies an ARMA (p,q) x (P Q)s  model with seasonal 
period s. We say that [��] is an ARIMA (p, d, q) x (P, D, 
Q)s model with seasonal period s. 

In practice, many time series contains a seasonal 
periodic component which repeats every s observations. 
Box-Jenkins has generalized the ARIMA model to deal 
with seasonality and defines a general multiplicative 
seasonal ARIMA model in the form: 

∅(�)Φ(�)(1 − �)(1 − ���)�� = �(�)Θ(B��)��(6) 
where B denotes the backward shift operator, ∅, Φ, �and Θ 
are polynomials for order p,P, q, and Q respectively. �� is 
the observed time series and �� represent an unobserved 
white noise series. i.e a sequence of independently 
(uncorrelated) identically distributed random variables 
with zero mean and constant variance ��

�. 
All the identified parameters shall be estimated using 

the method of maximum likelihood. Upon the fitting of the 
above discussed model, diagnostic checks shall be carried 
out to ensure normalcy using the following validity checks 

  Residual Analysis 

 Shapiro – Wilk Test of Normality 

 The Ljung-Box Test - A  portmanteau test according 
to [22] proposed the statistic: 
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Thus, a general “portmanteau” test would reject the 
ARMA (p, q) model if the observed value of Qexceeds an 
appropriate critical value in a Chi-Square distribution with 
k-p-q degrees offreedom. 

 The Akaike Information Criterion (AIC) 
The AIC is defined as 
AIC = -2� �⁄  + 2� �⁄    (8) 
Where l is the log likelihood computed as: 

l = -  
�

�
{ 1 + log(2�) + log (

�̂��̂

�
)}                                   (9) 

The AIC is often used in model selection for non-nested 
alternative and models with smaller values of AIC are 
considered best. 

III. ANALYSIS AND RESULTS 

Checking for Stationarity and Determination of The 
Appropriate Sarima Order 
The following tables and graph were derived 

 
Figure 1: Time Series Plot of  NSE ASI Series 

 
Figure 2: Sample ACF of of  NSE ASI Series 

 

 
Figure 3: Sample PACF of  NSE  ASI Series  

 

 
Figure 4: Plot of the first and seasonal differences  of  

NSE ASI Series  

  

Figure 5: Sample ACF of First Order and Seasonal 
Differencing of ASI 

 

Figure 6: Sample PACF of First Order and Seasonal 
Differencing of ASI 

 
Table 1: Augmented Dickey-Fuller Test for Series 
Stationarity 
 

Dickey-Fuller test statistic Lag order P-value 
-4.7637 5 0.01 
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Parameter Estimation of Identified Model 
 
Table 2: Possible SARIMA Models for ASI Series 
 

 
 
Model specification for the best fit SARIMA order in table 
2 is given as: 
(1 − ��� − ����)(1 − ���)(1 − �)�� = (1 − ���)(1 −
Θ�B��)��      (12) 
Substituting the values of the parameters, we have 
(1 − 0.4995� + 0.2191��)(1 − ���)(1 − �)�� =
(1 − 0.7342�)(1 + 0.7395)��(13) 

 
Figure 7: Adequacy Check For Sarima(2,1,1)X(0,1,1)12  

using ACF of Residuals 

Diagnostic Check on SARIMA (2,1,1)X(0,1,1)12 Model 

The Shapiro-Wilk test of normality gives a test statistic of 
W = 0.9235, with a P-value of 0.0000 which indicates that 
the residuals are normally distributed at 1%, 5% and 10% 
significance levels.. 
 The Ljung-Box test statistic examines the null hypothesis 
of independence in the residuals of the All-share Index 
series with a Chi-squared value of 0.01927 with a P-value 
of 0.8896 which lead to the acceptance of null hypothesis 
that all the autocorrelation functions are zero. 

IV. DISCUSSIONS 

From figure 1 above, it was observed that the pattern of the 
graph indicates that the series is non-stationary. There were 
both upward and downward trends as well as seasonal 
variation which also show that the series is stochastic in 
nature. The Autocorrelation plot in fig.2 indicates 
significant spikes from lag 1 to 24 as well as seasonal 
variation, a downward trend for subsequent lags and off to 
zero at lag 40 which also indicates an element of non-
stationary. In view of this, stationarity was therefore 
achieved by applying differencing as evidenced in fig 4, 5 
and 6 for the series acceptability ascertained by performing 
Augmented Dickey Fuller Test.  

Since the Dickey-Fuller test statistic is -4.7637 and the 
P-value is 0.01, the result obtained in table 1, we therefore 
fail to accept H0 and hence conclude that the alternative 
hypothesis is true i.e. the series is stationary in its mean 
and variance. This test brings to reality the fitting of a 
suitable SARIMA model. 

Having made the series stationary, decision was made 
on reasonable values of the orders of the Autoregressive 
(AR ()), Seasonal Autoregressive (SAR ()), ordinary 
differencing, Moving Average (MA()) and Seasonal 
Moving Average (SMA()). With a few iterations on this 
model-building strategy, we arrive at the parameters 
estimation presented in table 2, hence the SARIMA model 
of order (2, 1, 1)x(0, 1, 1)12 presented as equation (12). The 
model parameters have been parsimoniously fitted, the 
standard errors and log-likelihood have improved while the 
model has a smaller AIC and variance which confirms that 
it captures the dependence in the series more than any 
other iterative models suggested by the sample ACF and 
PACF of first order and seasonal differencing.  

Forecasting 
Based on the set objectives of this research, forecasting 
was done using the fitted SARIMA model and the forecast 
values exhibited downward trend for All-share Index in the 
Nigeria Stock Exchange in the month of  January, March, 
June to August and October every year and a pick up on 
the month of  February, April, May and December on 
yearly basis. However, the ASI has been confirmed to have 
seasonal effect over time since there is an upward trend in 
the stock market every month of December for the 
forecasted years of 2016-2018 respectively.  
 

 
Figure 8: Forecasts from SARIMA (2,1,1)x(0,1,1)12 
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V. CONCLUSION  

Having used necessary and suitable methods in line with 
the set goals of this research, there is no doubt that the 
main purpose has been fully realized. 
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